面向未来,活在当下! 收藏夹
我的
首页 > 数学 > 高考题 > 2023 > 2023年新高考1

2023年高考数学新高考Ⅰ-16

(5分)已知双曲线$C:\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1(a > 0,b > 0)$的左、右焦点分别为$F_{1}$,$F_{2}$.点$A$在$C$上,点$B$在$y$轴上,$\overrightarrow{{F_1}A}\bot \overrightarrow{{F_1}B}$,$\overrightarrow{{F_2}A}=-\dfrac{2}{3}\overrightarrow{{F_2}B}$,则$C$的离心率为  $\dfrac{3\sqrt{5}}{5}$ .
分析:(法一)设$F_{1}(-c,0)$,$F_{2}(c,0)$,$B(0,n)$,根据题意可得点$A$的坐标,进一步得到$\overrightarrow{{F}_{1}A}=(\dfrac{8}{3}c,-\dfrac{2}{3}n),\overrightarrow{{F}_{1}B}=(c,n)$,再由$\overrightarrow{{F_1}A}\bot \overrightarrow{{F_1}B}$,可得$n^{2}=4c^{2}$.结合点$A$在双曲线上,可得解;
(法二)易知$\dfrac{\vert \overrightarrow{{F}_{2}A}\vert }{\vert \overrightarrow{{F}_{2}B}\vert }=\dfrac{2}{3}$,设$\vert \overrightarrow{{F}_{2}A}\vert =2t,\vert \overrightarrow{{F}_{2}B}\vert =3t$,$\angle F_{1}AF_{2}=\theta$,解三角形可知$5c^{2}=9a^{2}$,进而得解.
解:

(法一)如图,设$F_{1}(-c,0)$,$F_{2}(c,0)$,$B(0,n)$,
设$A(x,y)$,则$\overrightarrow{{F}_{2}A}=(x-c,y),\overrightarrow{{F}_{2}B}=(-c,n)$,
又$\overrightarrow{F_2A}=-\dfrac{2}{3}\overrightarrow{F_2B}$,则$\left\{\begin{array}{l}{x-c=\dfrac{2}{3}c}\\ {y=-\dfrac{2}{3}n}\end{array}\right.$,可得$A(\dfrac{5}{3}c,-\dfrac{2}{3}n)$,
又$\overrightarrow{{F_1}A}\bot \overrightarrow{{F_1}B}$,且$\overrightarrow{{F}_{1}A}=(\dfrac{8}{3}c,-\dfrac{2}{3}n),\overrightarrow{{F}_{1}B}=(c,n)$,
则$\overrightarrow{{F}_{1}A}\cdot \overrightarrow{{F}_{1}B}=\dfrac{8}{3}{c}^{2}-\dfrac{2}{3}{n}^{2}=0$,化简得$n^{2}=4c^{2}$.
又点$A$在$C$上,
则$\dfrac{\dfrac{25}{9}{c}^{2}}{{a}^{2}}-\dfrac{\dfrac{4}{9}{n}^{2}}{{b}^{2}}=1$,整理可得$\dfrac{25{c}^{2}}{9{a}^{2}}-\dfrac{4{n}^{2}}{9{b}^{2}}=1$,
代$n^{2}=4c^{2}$,可得$\dfrac{25{c}^{2}}{{a}^{2}}-\dfrac{16{c}^{2}}{{b}^{2}}=9$,即$25{e}^{2}-\dfrac{16{e}^{2}}{{e}^{2}-1}=9$,
解得$e^2=\dfrac{9}{5}$或$\dfrac{1}{5}$(舍去),
故$e=\dfrac{3\sqrt{5}}{5}$.
(法二)由$\overrightarrow{F_2A}=-\dfrac{2}{3}\overrightarrow{F_2B}$,得$\dfrac{\vert \overrightarrow{{F}_{2}A}\vert }{\vert \overrightarrow{{F}_{2}B}\vert }=\dfrac{2}{3}$,
设$\vert \overrightarrow{{F}_{2}A}\vert =2t,\vert \overrightarrow{{F}_{2}B}\vert =3t$,由对称性可得$\vert \overrightarrow{{F}_{1}B}\vert =3t$,
则$\vert \overrightarrow{A{F}_{1}}\vert =2t+2a,\vert \overrightarrow{AB}\vert =5t$,
设$\angle F_{1}AF_{2}=\theta$,则$\sin \theta =\dfrac{3t}{5t}=\dfrac{3}{5}$,
所以$\cos \theta =\dfrac{4}{5}=\dfrac{2t+2a}{5t}$,解得$t=a$,
所以$\vert \overrightarrow{A{F}_{1}}\vert =2t+2a=4a,\vert \overrightarrow{A{F}_{2}}\vert =2a$,
在△$AF_{1}F_{2}$ 中,由余弦定理可得$\cos \theta =\dfrac{16{a}^{2}+4{a}^{2}-4{c}^{2}}{16{a}^{2}}=\dfrac{4}{5}$,
即$5c^{2}=9a^{2}$,则$e=\dfrac{3\sqrt{5}}{5}$.
故答案为:$\dfrac{3\sqrt{5}}{5}$.

点评:本题考查双曲线的性质,考查运算求解能力,属于中档题.
来顶一下
返回首页
返回首页
收藏知识
收藏知识
收藏知识
打印
相关知识
圆锥曲线
发表笔记 共有条笔记
验证码:
学习笔记(共有 0 条)
开心教练从2004年开始自费开设这个网站. 为了可以持续免费提供这些内容, 并且没有广告干扰,请大家随意打赏,谢谢!,
(微信中可直接长按微信打赏二维码。)
微信 支付宝