面向未来,活在当下! 收藏夹
我的
首页 > 数学 > 高考题 > 2023 > 2023年全国乙理

2023年高考数学乙卷-理12

(5分)已知$\odot O$的半径为1,直线$PA$与$\odot O$相切于点$A$,直线$PB$与$\odot O$交于$B$,$C$两点,$D$为$BC$的中点,若$\vert PO\vert =\sqrt{2}$,则$\overrightarrow{PA}\cdot \overrightarrow{PD}$的最大值为$($  $)$
A.$\dfrac{1+\sqrt{2}}{2}$              B.$\dfrac{1+2\sqrt{2}}{2}$              C.$1+\sqrt{2}$              D.$2+\sqrt{2}$
答案:$A$
分析:设$\angle OPC=\alpha$,则$-\dfrac{\pi }{4}\leqslant \alpha \leqslant \dfrac{\pi }{4}$,根据题意可得$\angle APO=45^\circ$,再将$\overrightarrow{PA}\cdot \overrightarrow{PD}$转化为$\alpha$的函数,最后通过函数思想,即可求解.
解:如图,设$\angle OPC=\alpha$,则$-\dfrac{\pi }{4}\leqslant \alpha \leqslant \dfrac{\pi }{4}$,

根据题意可得:$\angle APO=45^\circ$,
$\therefore$$\overrightarrow{PA}\cdot \overrightarrow{PD}=\vert \overrightarrow{PA}\vert \cdot \vert \overrightarrow{PD}\vert \cdot \cos (\alpha +\dfrac{\pi }{4})$
$=1\times \sqrt{2}\cos \alpha \cos (\alpha +\dfrac{\pi }{4})$
$=\cos ^{2}\alpha -\sin \alpha \cos \alpha$
$=\dfrac{1+\cos 2\alpha -\sin 2\alpha }{2}$
$=\dfrac{1}{2}+\dfrac{\sqrt{2}}{2}\cos (2\alpha +\dfrac{\pi }{4})$,又$-\dfrac{\pi }{4}\leqslant \alpha \leqslant \dfrac{\pi }{4}$,
$\therefore$当$2\alpha +\dfrac{\pi }{4}=0$,$\alpha =-\dfrac{\pi }{8}$,$\cos (2\alpha +\dfrac{\pi }{4})=1$时,
$\overrightarrow{PA}\cdot \overrightarrow{PD}$取得最大值$\dfrac{1}{2}+\dfrac{\sqrt{2}}{2}$.
故选:$A$.

点评:本题考查向量数量积的最值的求解,函数思想,属中档题.
来顶一下
返回首页
返回首页
收藏知识
收藏知识
收藏知识
打印
相关知识
    无相关信息
发表笔记 共有条笔记
验证码:
学习笔记(共有 0 条)
开心教练从2004年开始自费开设这个网站. 为了可以持续免费提供这些内容, 并且没有广告干扰,请大家随意打赏,谢谢!,
(微信中可直接长按微信打赏二维码。)
微信 支付宝