(5分)已知⊙O的半径为1,直线PA与⊙O相切于点A,直线PB与⊙O交于B,C两点,D为BC的中点,若|PO|=√2,则→PA⋅→PD的最大值为( ) A.1+√22 B.1+2√22 C.1+√2 D.2+√2 答案:A 分析:设∠OPC=α,则−π4⩽α⩽π4,根据题意可得∠APO=45∘,再将→PA⋅→PD转化为α的函数,最后通过函数思想,即可求解. 解:如图,设∠OPC=α,则−π4⩽α⩽π4,
 根据题意可得:∠APO=45∘, ∴\overrightarrow{PA}\cdot \overrightarrow{PD}=\vert \overrightarrow{PA}\vert \cdot \vert \overrightarrow{PD}\vert \cdot \cos (\alpha +\dfrac{\pi }{4}) =1\times \sqrt{2}\cos \alpha \cos (\alpha +\dfrac{\pi }{4}) =\cos ^{2}\alpha -\sin \alpha \cos \alpha =\dfrac{1+\cos 2\alpha -\sin 2\alpha }{2} =\dfrac{1}{2}+\dfrac{\sqrt{2}}{2}\cos (2\alpha +\dfrac{\pi }{4}),又-\dfrac{\pi }{4}\leqslant \alpha \leqslant \dfrac{\pi }{4}, \therefore当2\alpha +\dfrac{\pi }{4}=0,\alpha =-\dfrac{\pi }{8},\cos (2\alpha +\dfrac{\pi }{4})=1时, \overrightarrow{PA}\cdot \overrightarrow{PD}取得最大值\dfrac{1}{2}+\dfrac{\sqrt{2}}{2}. 故选:A.
点评:本题考查向量数量积的最值的求解,函数思想,属中档题.
|