(5分)已知$\odot O$的半径为1,直线$PA$与$\odot O$相切于点$A$,直线$PB$与$\odot O$交于$B$,$C$两点,$D$为$BC$的中点,若$\vert PO\vert =\sqrt{2}$,则$\overrightarrow{PA}\cdot \overrightarrow{PD}$的最大值为$($ $)$ A.$\dfrac{1+\sqrt{2}}{2}$ B.$\dfrac{1+2\sqrt{2}}{2}$ C.$1+\sqrt{2}$ D.$2+\sqrt{2}$ 答案:$A$ 分析:设$\angle OPC=\alpha$,则$-\dfrac{\pi }{4}\leqslant \alpha \leqslant \dfrac{\pi }{4}$,根据题意可得$\angle APO=45^\circ$,再将$\overrightarrow{PA}\cdot \overrightarrow{PD}$转化为$\alpha$的函数,最后通过函数思想,即可求解. 解:如图,设$\angle OPC=\alpha$,则$-\dfrac{\pi }{4}\leqslant \alpha \leqslant \dfrac{\pi }{4}$,
根据题意可得:$\angle APO=45^\circ$, $\therefore$$\overrightarrow{PA}\cdot \overrightarrow{PD}=\vert \overrightarrow{PA}\vert \cdot \vert \overrightarrow{PD}\vert \cdot \cos (\alpha +\dfrac{\pi }{4})$ $=1\times \sqrt{2}\cos \alpha \cos (\alpha +\dfrac{\pi }{4})$ $=\cos ^{2}\alpha -\sin \alpha \cos \alpha$ $=\dfrac{1+\cos 2\alpha -\sin 2\alpha }{2}$ $=\dfrac{1}{2}+\dfrac{\sqrt{2}}{2}\cos (2\alpha +\dfrac{\pi }{4})$,又$-\dfrac{\pi }{4}\leqslant \alpha \leqslant \dfrac{\pi }{4}$, $\therefore$当$2\alpha +\dfrac{\pi }{4}=0$,$\alpha =-\dfrac{\pi }{8}$,$\cos (2\alpha +\dfrac{\pi }{4})=1$时, $\overrightarrow{PA}\cdot \overrightarrow{PD}$取得最大值$\dfrac{1}{2}+\dfrac{\sqrt{2}}{2}$. 故选:$A$.
点评:本题考查向量数量积的最值的求解,函数思想,属中档题.
|