2023年高考数学上海春20<-->返回列表
(18分)已知函数f(x)=ax3−(a+1)x2+x,g(x)=kx+m(其中a⩾0,k,m∈R),若任意x∈[0,1]均有f(x)⩽g(x),则称函数y=g(x)是函数y=f(x)的“控制函数”,且对所有满足条件的函数y=g(x)在x处取得的最小值记为¯f(x). (1)若a=2,g(x)=x,试判断函数y=g(x)是否为函数y=f(x)的“控制函数”,并说明理由; (2)若a=0,曲线y=f(x)在x=14处的切线为直线y=h(x),证明:函数y=h(x)为函数y=f(x)的“控制函数”,并求¯f(14)的值; (3)若曲线y=f(x)在x=x0,x0∈(0,1)处的切线过点(1,0),且c∈[x0,1],证明:当且仅当c=x0或c=1时,¯f(c)=f(c). 分析:(1)设h(x)=f(x)−g(x)=2x3−3x2,h′(x)=6x2−6x=6x(x−1),当x∈[0,1]时,易知h′(x)=6x(x−1)⩽0,即h(x)单调减,求得最值即可判断; (2)根据题意得到f(x)⩽h(x),即y=h(x)为函数y=f(x)的“控制函数“,代入即可求解; (3)f(x)=ax3−(a+1)x2+x,f′(x)=3ax2−2(a+1)x+1,y=f(x)在x=x0(x0∈(0,1))处的切线为t(x),求导整理得到函数t(x)必是函数y=f(x)的“控制函数“,又此时“控制函数“g(x)必与y=f(x)相切于x点,t(x)与y=f(x)在x=12a处相切,且过点(1,0),在(12a,1)之间的点不可能使得y=f(x)在(12a,1)切线下方,所以ˉf(c)=f(c)⇒c=12a=x0或c=1,即可得证. 解:(1)f(x)=2x3−3x2+x,设h(x)=f(x)−g(x)=2x3−3x2, h′(x)=6x2−6x=6x(x−1),当x∈[0,1]时,易知h′(x)=6x(x−1)⩽0,即h(x)单调减, ∴,即f(x)-g(x)\leqslant 0\Rightarrow f(x)\leqslant g(x), \therefore g(x)是f(x)的“控制函数“; (2)f(x)=-{x}^{2}+x,f(\dfrac{1}{4})=\dfrac{3}{16},f\prime (x)=-2x+1,f\prime (\dfrac{1}{4})=\dfrac{1}{2}, \thereforeh(x)=\dfrac{1}{2}(x-\dfrac{1}{4})+\dfrac{3}{16}=\dfrac{1}{2}x+\dfrac{1}{16},f(x)-h(x)=-{x}^{2}+\dfrac{1}{2}x-\dfrac{1}{16}=-{(x-\dfrac{1}{4})}^{2}\leqslant 0, \therefore f(x)\leqslant h(x),即y=h(x)为函数y=f(x)的“控制函数“, 又f(\dfrac{1}{4})=h(\dfrac{1}{4})=\dfrac{3}{16},且g(\dfrac{1}{4})\geqslant f(\dfrac{1}{4})=\dfrac{3}{16},\therefore\bar{f}(\dfrac{1}{4})=\dfrac{3}{16}; 证明:(3)f(x)=ax^{3}-(a+1)x^{2}+x,f\prime (x)=3ax^{2}-2(a+1)x+1, y=f(x)在x=x_{0}(x_{0}\in (0,1))处的切线为t(x), t(x)=f\prime (x_{0})(x-x_{0})+f(x_{0}),t(x_{0})=f(x_{0}),t(1)=0\Rightarrow f(1)=0, f\prime ({x}_{0})=3a{{x}_{0}}^{2}-2(a+1){x}_{0}+1\Rightarrow f\prime ({x}_{0})(1-{x}_{0})=f(1)-f({x}_{0})=(1-{x}_{0})[a(1+{x}_{0}+{{x}_{0}}^{2})-(a+1)(1+{x}_{0})+1] \Rightarrow 3a{{x}_{0}}^{2}-2(a+1){x}_{0}+1=a{{x}_{0}}^{2}-{x}_{0}\Rightarrow (2a{x}_{0}-1)({x}_{0}-1)=0,{x}_{0}\ne 1\Rightarrow a=\dfrac{1}{2{x}_{0}}\in (\dfrac{1}{2},+\infty )\Rightarrow {x}_{0}=\dfrac{1}{2a}, f\prime ({x}_{0})=3a{{x}_{0}}^{2}-2(a+1){x}_{0}+1=3a{(\dfrac{1}{2a})}^{2}-2(a+1)(\dfrac{1}{2a})+1=-\dfrac{1}{4a}, f(x_0)=a(\dfrac{1}{2a})^3-(a+1)(\dfrac{1}{2a})^2+\dfrac{1}{2a}=\dfrac{2a-1}{8a^2}, t(x)=f\prime ({x}_{0})(x-{x}_{0})+f({x}_{0})=-\dfrac{1}{4a}(x-\dfrac{1}{2a})+\dfrac{2a-1}{8{a}^{2}}\Rightarrow t(x)=-\dfrac{1}{4a}(x-1), f(x)=x(x-1)(ax-1)\leqslant t(x)\Rightarrow ax^2-x+\dfrac{1}{4a}\geqslant 0,(x-\dfrac{1}{2a})^2\geqslant 0恒成立, 函数t(x)必是函数y=f(x)的“控制函数“, \forall g(x)=kx+m\geqslant f(x)\Rightarrow \forall \bar{f}(x)\geqslant f(x),\bar{f}(x)=f(x),x\in (0,1)是函数y=f(x)的“控制函数“, 此时“控制函数“g(x)必与y=f(x)相切于x点,t(x)与y=f(x)在x=\dfrac{1}{2a}处相切,且过点(1,0), 在(\dfrac{1}{2a},1)之间的点不可能使得y=f(x)在(\dfrac{1}{2a},1)切线下方,所以\bar{f}(c)=f(c)\Rightarrow c=\dfrac{1}{2a}=x_0或c=1, 所以曲线y=f(x)在x=x_{0}(x_{0}\in (0,1))处的切线过点(1,0),且c\in [x_{0},1], 当且仅当c=x_{0}或c=1时,\bar{f}(c)=f(c). 点评:本题考查了导数的综合运用,属于难题.
2023年高考数学上海春20<-->返回列表
全网搜索"2023年高考数学上海春21"相关
|