Loading [MathJax]/jax/element/mml/optable/MathOperators.js
面向未来,活在当下! 收藏夹
我的
首页 > 数学 > 高考题 > 2023 > 2023年上海春

2023年高考数学上海春21

(18分)已知函数f(x)=ax3(a+1)x2+xg(x)=kx+m(其中a0kmR),若任意x[01]均有f(x)g(x),则称函数y=g(x)是函数y=f(x)的“控制函数”,且对所有满足条件的函数y=g(x)x处取得的最小值记为¯f(x)
(1)若a=2g(x)=x,试判断函数y=g(x)是否为函数y=f(x)的“控制函数”,并说明理由;
(2)若a=0,曲线y=f(x)x=14处的切线为直线y=h(x),证明:函数y=h(x)为函数y=f(x)的“控制函数”,并求¯f(14)的值;
(3)若曲线y=f(x)x=x0x0(0,1)处的切线过点(1,0),且c[x01],证明:当且仅当c=x0c=1时,¯f(c)=f(c).
分析:(1)设h(x)=f(x)g(x)=2x33x2h(x)=6x26x=6x(x1),当x[01]时,易知h(x)=6x(x1)0,即h(x)单调减,求得最值即可判断;
(2)根据题意得到f(x)h(x),即y=h(x)为函数y=f(x)的“控制函数“,代入即可求解;
(3)f(x)=ax3(a+1)x2+xf(x)=3ax22(a+1)x+1y=f(x)x=x0(x0(0,1))处的切线为t(x),求导整理得到函数t(x)必是函数y=f(x)的“控制函数“,又此时“控制函数“g(x)必与y=f(x)相切于x点,t(x)y=f(x)x=12a处相切,且过点(1,0),在(12a,1)之间的点不可能使得y=f(x)(12a,1)切线下方,所以ˉf(c)=f(c)c=12a=x0c=1,即可得证.
解:(1)f(x)=2x33x2+x,设h(x)=f(x)g(x)=2x33x2
h(x)=6x26x=6x(x1),当x[01]时,易知h(x)=6x(x1)0,即h(x)单调减,
,即f(x)-g(x)\leqslant 0\Rightarrow f(x)\leqslant g(x)
\therefore g(x)f(x)的“控制函数“;
(2)f(x)=-{x}^{2}+x,f(\dfrac{1}{4})=\dfrac{3}{16},f\prime (x)=-2x+1,f\prime (\dfrac{1}{4})=\dfrac{1}{2}
\thereforeh(x)=\dfrac{1}{2}(x-\dfrac{1}{4})+\dfrac{3}{16}=\dfrac{1}{2}x+\dfrac{1}{16},f(x)-h(x)=-{x}^{2}+\dfrac{1}{2}x-\dfrac{1}{16}=-{(x-\dfrac{1}{4})}^{2}\leqslant 0
\therefore f(x)\leqslant h(x),即y=h(x)为函数y=f(x)的“控制函数“,
f(\dfrac{1}{4})=h(\dfrac{1}{4})=\dfrac{3}{16},且g(\dfrac{1}{4})\geqslant f(\dfrac{1}{4})=\dfrac{3}{16}\therefore\bar{f}(\dfrac{1}{4})=\dfrac{3}{16}
证明:(3)f(x)=ax^{3}-(a+1)x^{2}+xf\prime (x)=3ax^{2}-2(a+1)x+1
y=f(x)x=x_{0}(x_{0}\in (0,1))处的切线为t(x)
t(x)=f\prime (x_{0})(x-x_{0})+f(x_{0})t(x_{0})=f(x_{0})t(1)=0\Rightarrow f(1)=0
f\prime ({x}_{0})=3a{{x}_{0}}^{2}-2(a+1){x}_{0}+1\Rightarrow f\prime ({x}_{0})(1-{x}_{0})=f(1)-f({x}_{0})=(1-{x}_{0})[a(1+{x}_{0}+{{x}_{0}}^{2})-(a+1)(1+{x}_{0})+1]
\Rightarrow 3a{{x}_{0}}^{2}-2(a+1){x}_{0}+1=a{{x}_{0}}^{2}-{x}_{0}\Rightarrow (2a{x}_{0}-1)({x}_{0}-1)=0,{x}_{0}\ne 1\Rightarrow a=\dfrac{1}{2{x}_{0}}\in (\dfrac{1}{2},+\infty )\Rightarrow {x}_{0}=\dfrac{1}{2a}
f\prime ({x}_{0})=3a{{x}_{0}}^{2}-2(a+1){x}_{0}+1=3a{(\dfrac{1}{2a})}^{2}-2(a+1)(\dfrac{1}{2a})+1=-\dfrac{1}{4a}
f(x_0)=a(\dfrac{1}{2a})^3-(a+1)(\dfrac{1}{2a})^2+\dfrac{1}{2a}=\dfrac{2a-1}{8a^2}
t(x)=f\prime ({x}_{0})(x-{x}_{0})+f({x}_{0})=-\dfrac{1}{4a}(x-\dfrac{1}{2a})+\dfrac{2a-1}{8{a}^{2}}\Rightarrow t(x)=-\dfrac{1}{4a}(x-1)
f(x)=x(x-1)(ax-1)\leqslant t(x)\Rightarrow ax^2-x+\dfrac{1}{4a}\geqslant 0,(x-\dfrac{1}{2a})^2\geqslant 0恒成立,
函数t(x)必是函数y=f(x)的“控制函数“,
\forall g(x)=kx+m\geqslant f(x)\Rightarrow \forall \bar{f}(x)\geqslant f(x),\bar{f}(x)=f(x),x\in (0,1)是函数y=f(x)的“控制函数“,
此时“控制函数“g(x)必与y=f(x)相切于x点,t(x)y=f(x)x=\dfrac{1}{2a}处相切,且过点(1,0)
(\dfrac{1}{2a},1)之间的点不可能使得y=f(x)(\dfrac{1}{2a},1)切线下方,所以\bar{f}(c)=f(c)\Rightarrow c=\dfrac{1}{2a}=x_0c=1
所以曲线y=f(x)x=x_{0}(x_{0}\in (0,1))处的切线过点(1,0),且c\in [x_{0}1]
当且仅当c=x_{0}c=1时,\bar{f}(c)=f(c)
点评:本题考查了导数的综合运用,属于难题.
7
来顶一下
返回首页
返回首页
收藏知识
收藏知识
收藏知识
打印
相关知识
    无相关信息
发表笔记 共有0条笔记
验证码:
学习笔记(共有 0 条)
开心教练从2004年开始自费开设这个网站. 为了可以持续免费提供这些内容, 并且没有广告干扰,请大家随意打赏,谢谢!,
(微信中可直接长按微信打赏二维码。)
微信 支付宝