2023年高考数学上海春21 |
|
2023-07-08 14:37:59 |
|
(18分)已知函数$f(x)=ax^{3}-(a+1)x^{2}+x$,$g(x)=kx+m$(其中$a\geqslant 0$,$k$,$m\in R)$,若任意$x\in [0$,$1]$均有$f(x)\leqslant g(x)$,则称函数$y=g(x)$是函数$y=f(x)$的“控制函数”,且对所有满足条件的函数$y=g(x)$在$x$处取得的最小值记为$\overline{f}(x)$. (1)若$a=2$,$g(x)=x$,试判断函数$y=g(x)$是否为函数$y=f(x)$的“控制函数”,并说明理由; (2)若$a=0$,曲线$y=f(x)$在$x=\dfrac{1}{4}$处的切线为直线$y=h(x)$,证明:函数$y=h(x)$为函数$y=f(x)$的“控制函数”,并求$\overline{f}(\dfrac{1}{4})$的值; (3)若曲线$y=f(x)$在$x=x_{0}$,$x_{0}\in (0,1)$处的切线过点$(1,0)$,且$c\in [x_{0}$,$1]$,证明:当且仅当$c=x_{0}$或$c=1$时,$\overline{f}$(c)$=f$(c). 分析:(1)设$h(x)=f(x)-g(x)=2x^{3}-3x^{2}$,$h\prime (x)=6x^{2}-6x=6x(x-1)$,当$x\in [0$,$1]$时,易知$h\prime (x)=6x(x-1)\leqslant 0$,即$h(x)$单调减,求得最值即可判断; (2)根据题意得到$f(x)\leqslant h(x)$,即$y=h(x)$为函数$y=f(x)$的“控制函数“,代入即可求解; (3)$f(x)=ax^{3}-(a+1)x^{2}+x$,$f\prime (x)=3ax^{2}-2(a+1)x+1$,$y=f(x)$在$x=x_{0}(x_{0}\in (0,1))$处的切线为$t(x)$,求导整理得到函数$t(x)$必是函数$y=f(x)$的“控制函数“,又此时“控制函数“$g(x)$必与$y=f(x)$相切于$x$点,$t(x)$与$y=f(x)$在$x=\dfrac{1}{2a}$处相切,且过点$(1,0)$,在$(\dfrac{1}{2a},1)$之间的点不可能使得$y=f(x)$在$(\dfrac{1}{2a},1)$切线下方,所以$\bar{f}(c)=f(c)\Rightarrow c=\dfrac{1}{2a}=x_0$或$c=1$,即可得证. 解:(1)$f(x)=2x^{3}-3x^{2}+x$,设$h(x)=f(x)-g(x)=2x^{3}-3x^{2}$, $h\prime (x)=6x^{2}-6x=6x(x-1)$,当$x\in [0$,$1]$时,易知$h\prime (x)=6x(x-1)\leqslant 0$,即$h(x)$单调减, $\therefore h(x)_{max}=h(0)=0$,即$f(x)-g(x)\leqslant 0\Rightarrow f(x)\leqslant g(x)$, $\therefore g(x)$是$f(x)$的“控制函数“; (2)$f(x)=-{x}^{2}+x,f(\dfrac{1}{4})=\dfrac{3}{16},f\prime (x)=-2x+1,f\prime (\dfrac{1}{4})=\dfrac{1}{2}$, $\therefore$$h(x)=\dfrac{1}{2}(x-\dfrac{1}{4})+\dfrac{3}{16}=\dfrac{1}{2}x+\dfrac{1}{16},f(x)-h(x)=-{x}^{2}+\dfrac{1}{2}x-\dfrac{1}{16}=-{(x-\dfrac{1}{4})}^{2}\leqslant 0$, $\therefore f(x)\leqslant h(x)$,即$y=h(x)$为函数$y=f(x)$的“控制函数“, 又$f(\dfrac{1}{4})=h(\dfrac{1}{4})=\dfrac{3}{16}$,且$g(\dfrac{1}{4})\geqslant f(\dfrac{1}{4})=\dfrac{3}{16}$,$\therefore$$\bar{f}(\dfrac{1}{4})=\dfrac{3}{16}$; 证明:(3)$f(x)=ax^{3}-(a+1)x^{2}+x$,$f\prime (x)=3ax^{2}-2(a+1)x+1$, $y=f(x)$在$x=x_{0}(x_{0}\in (0,1))$处的切线为$t(x)$, $t(x)=f\prime (x_{0})(x-x_{0})+f(x_{0})$,$t(x_{0})=f(x_{0})$,$t$(1)$=0\Rightarrow f$(1)$=0$, $f\prime ({x}_{0})=3a{{x}_{0}}^{2}-2(a+1){x}_{0}+1\Rightarrow f\prime ({x}_{0})(1-{x}_{0})=f(1)-f({x}_{0})=(1-{x}_{0})[a(1+{x}_{0}+{{x}_{0}}^{2})-(a+1)(1+{x}_{0})+1]$ $\Rightarrow 3a{{x}_{0}}^{2}-2(a+1){x}_{0}+1=a{{x}_{0}}^{2}-{x}_{0}\Rightarrow (2a{x}_{0}-1)({x}_{0}-1)=0,{x}_{0}\ne 1\Rightarrow a=\dfrac{1}{2{x}_{0}}\in (\dfrac{1}{2},+\infty )\Rightarrow {x}_{0}=\dfrac{1}{2a}$, $f\prime ({x}_{0})=3a{{x}_{0}}^{2}-2(a+1){x}_{0}+1=3a{(\dfrac{1}{2a})}^{2}-2(a+1)(\dfrac{1}{2a})+1=-\dfrac{1}{4a}$, $f(x_0)=a(\dfrac{1}{2a})^3-(a+1)(\dfrac{1}{2a})^2+\dfrac{1}{2a}=\dfrac{2a-1}{8a^2}$, $t(x)=f\prime ({x}_{0})(x-{x}_{0})+f({x}_{0})=-\dfrac{1}{4a}(x-\dfrac{1}{2a})+\dfrac{2a-1}{8{a}^{2}}\Rightarrow t(x)=-\dfrac{1}{4a}(x-1)$, $f(x)=x(x-1)(ax-1)\leqslant t(x)\Rightarrow ax^2-x+\dfrac{1}{4a}\geqslant 0,(x-\dfrac{1}{2a})^2\geqslant 0$恒成立, 函数$t(x)$必是函数$y=f(x)$的“控制函数“, $\forall g(x)=kx+m\geqslant f(x)\Rightarrow \forall \bar{f}(x)\geqslant f(x),\bar{f}(x)=f(x),x\in (0,1)$是函数$y=f(x)$的“控制函数“, 此时“控制函数“$g(x)$必与$y=f(x)$相切于$x$点,$t(x)$与$y=f(x)$在$x=\dfrac{1}{2a}$处相切,且过点$(1,0)$, 在$(\dfrac{1}{2a},1)$之间的点不可能使得$y=f(x)$在$(\dfrac{1}{2a},1)$切线下方,所以$\bar{f}(c)=f(c)\Rightarrow c=\dfrac{1}{2a}=x_0$或$c=1$, 所以曲线$y=f(x)$在$x=x_{0}(x_{0}\in (0,1))$处的切线过点$(1,0)$,且$c\in [x_{0}$,$1]$, 当且仅当$c=x_{0}$或$c=1$时,$\bar{f}(c)=f(c)$. 点评:本题考查了导数的综合运用,属于难题.
|
|
http://x.91apu.com//shuxue/gkt/2023/2023shc/2023-07-08/33837.html |