br>
2023年高考数学甲卷-文20<-->2023年高考数学甲卷-文22
(12分)已知直线$x-2y+1=0$与抛物线$C:y^{2}=2px(p > 0)$交于$A$,$B$两点,$\vert AB\vert =4\sqrt{15}$. (1)求$p$; (2)设$F$为$C$的焦点,$M$,$N$为$C$上两点,且$\overrightarrow{FM}\cdot \overrightarrow{FN}=0$,求$\Delta MFN$面积的最小值. 答案:(1)$p=2$; (2)$12-8\sqrt{2}$. 分析:(1)利用直线与抛物线的位置关系,联立直线和抛物线方程求出弦长即可得出$P$; (2)设直线$MN:x=my+n$,$M(x_{1}$,$y_{1})$,$N(x_{2}$,$y_{2})$,利用$\overrightarrow{MF}\cdot \overrightarrow{NF}=0$,找到$m$,$n$的关系,以及$\Delta MNF$的面积表达式,再结合函数的性质即可求出其最小值. 解:设$A(x_{1}$,$y_{1})$,$B(x_{2}$,$y_{2})$,联立$\left\{\begin{array}{l}{x-2y+1=0}\\ {{y}^{2}=2px(p > 0)}\end{array}\right.$, 消去$x$得:$y^{2}-4py+2p=0$, $\therefore y_{1}+y_{2}=4p$,$y_{1}y_{2}=2p$,△$=16p^{2}-8p > 0$, $\therefore p(2p-1) > 0$,$\therefore p > \dfrac{1}{2}$, $\vert AB\vert =\sqrt{1+4}\vert y_{1}-y_{2}\vert =\sqrt{5}\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}=4\sqrt{15}$, $\therefore 16p^{2}-8p=48$,$\therefore 2p^{2}-p-6=0$,$\therefore (2p+3)(p-2)=0$, $\therefore p=2$, (2)由(1)知$y^{2}=4x$,所以$F(1,0)$,显然直线$MN$的斜率不可能为零, 设直线$MN:x=my+n$,$M(x_{1}$,$y_{1})$,$N(x_{2}$,$y_{2})$ 由$\left\{\begin{array}{l}{{y}^{2}=4x}\\ {x=my+n}\end{array}\right.$,可得$y^{2}-4m-4n=0$,所以$y_{1}+y_{2}=4m$,$y_{1}y_{2}=-4n$, △$=16m^{2}+16n > 0\rightarrow m^{2}+n > 0$, 因为$\overrightarrow{MF}\cdot \overrightarrow{NF}=0$,所以$(x_{1}-1)(x_{2}-1)+y_{1}y_{2}=0$, 即$(my_{1}+n-1)(my_{2}+n-1)+y_{1}y_{2}=0$,即$(m^2+1)y_1y_2+m(n-1)(y_1+y_2)+(n-1)^2=0$, 将$y_{1}+y_{2}=4m$,$y_{2}=-4n$,代入得$4m^{2}=n^{2}-6n+1$, $\therefore 4(m^{2}+n)=(n-1)^{2} > 0$,所以$n\ne 1$,且$n^{2}-6n+1\geqslant 0$,解得$n\geqslant 3+2\sqrt{2}$或$n\leqslant 3-2\sqrt{2}$. 设点$F$到直线$MN$的距离为$d$,所以$d=\dfrac{\vert n-1\vert }{\sqrt{1+{m}^{2}}}$, $\vert MN\vert =\sqrt{1+{m}^{2}}\vert y_{1}-y_{2}\vert =\sqrt{1+{m}^{2}}\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}=\sqrt{1+{m}^{2}}\sqrt{16{m}^{2}+16n}$ $=\sqrt{1+{m}^{2}}\sqrt{4({n}^{2}-6n+1)+16n}=2\sqrt{1+{m}^{2}}\vert n-1\vert$, 所以$\Delta MNF$的面积$S=\dfrac{1}{2}\vert MN\vert \times d=\dfrac{1}{2}\times \dfrac{\vert n-1\vert }{\sqrt{{m}^{2}+1}}\times 2\sqrt{1+{m}^{2}}\vert n-1\vert$, 又$n\geqslant 3+2\sqrt{2}$或$n\leqslant 3-2\sqrt{2}$,所以当$n=3-2\sqrt{2}$时,$\Delta MNF$的面积$S_{min}=(2-2\sqrt{2})^{2}=12-8\sqrt{2}$. 点评:本题考查直线与抛物线的位置关系,考查向量的应用,考查三角形的问题的最值问题,考查方程思想,属难题.
2023年高考数学甲卷-文20<-->2023年高考数学甲卷-文22
全网搜索"2023年高考数学甲卷-文21"相关
|