面向未来,活在当下! 收藏夹
我的
首页 > 数学 > 高考题 > 2023 > 2023年全国甲文

2023年高考数学甲卷-文20

(12分)已知函数f(x)=axsinxcos2xx(0,π2)
(1)当a=1时,讨论f(x)的单调性;
(2)若f(x)+sinx<0,求a的取值范围.
答案:(1)f(x)(0,π2)上单调递减;(2)(0]
分析:(1)先求导函数,再判断导函数的符号,即可求解;
(2)设g(x)=f(x)+sinx=axsinxcos2x+sinxx(0,π2),利用其二阶导函数的符号可得一阶导函数在(0,π2)上单调递减,再根据g(x)=f(x)+sinx<0g(0),可得g(0)=a1+10,再分类讨论验证,即可求解.
解:(1)当a=1时,f(x)=xsinxcos2xx(0,π2)
f(x)=1cosxcos2x2cosx(sinx)sinxcos4x
=1cos2x+2sin2xcos3x=cos3x+cos2x2cos3x
t=cosxx(0,π2)t(0,1)
cos3x+cos2x2=t3+t22
=(t1)(t2+2t+2)=(t1)[(t+1)2+1]<0
cos3x=t3>0
f(x)=cos3x+cos2x2cos3x=(t1)(t2+2t+2)t3<0
f(x)(0,π2)上单调递减;
(2)设g(x)=f(x)+sinx=axsinxcos2x+sinxx(0,π2)
g(x)=a1+sin2xcos3x+cosxx(0,π2)
g(x)=2sinxcos4x+3(1+sin2x)cos2xsinxcos6xsinx<0
g(x)(0,π2)上单调递减,
g(x)=f(x)+sinx<0,又g(0)=0,则g(0)=a1+10a0
a=0时,sinxsinxcos2x=sinx(11cos2x)
x(0,π2)0<sinx<10<cosx<11cos2x>1
f(x)+sinx=sinxsinxcos2x<0,满足题意;
a<0时,x(0,π2)ax<0
f(x)+sinx=axsinxcos2x+sinx<sinx<sinxsinxcos2x<0,满足题意;
综合可得:若f(x)+sinx<0,则a0
所以a的取值范围为(0]
点评:本题考查导数的综合应用,利用导数研究函数的单调性,化归转化思想,属难题.
6
来顶一下
返回首页
返回首页
收藏知识
收藏知识
收藏知识
打印
相关知识
    无相关信息
发表笔记 共有0条笔记
验证码:
学习笔记(共有 0 条)
开心教练从2004年开始自费开设这个网站. 为了可以持续免费提供这些内容, 并且没有广告干扰,请大家随意打赏,谢谢!,
(微信中可直接长按微信打赏二维码。)
微信 支付宝