br>
2023年高考数学甲卷-文10<-->2023年高考数学甲卷-文12
(5分)已知函数$f(x)={e^{-{{(x-1)}^2}}}$.记$a=f(\dfrac{\sqrt{2}}{2})$,$b=f(\dfrac{\sqrt{3}}{2})$,$c=f(\dfrac{\sqrt{6}}{2})$,则$($ $)$ A.$b > c > a$ B.$b > a > c$ C.$c > b > a$ D.$c > a > b$ 答案:$A$ 分析:令$g(x)=-(x-1)^{2}$,先利用作差比较法及一元二次函数的性质,可得$g(\dfrac{\sqrt{2}}{2}) < g(\dfrac{\sqrt{6}}{2}) < g(\dfrac{\sqrt{3}}{2})$,再根据$y=e^{x}$的单调性,即可求解. 解:令$g(x)=-(x-1)^{2}$,则$g(x)$的开口向下,对称轴为$x=1$, $\because$$\dfrac{\sqrt{6}}{2}-1-(1-\dfrac{\sqrt{3}}{2})=\dfrac{\sqrt{6}+\sqrt{3}}{2}-\dfrac{4}{2}$, 而$(\sqrt{6}+\sqrt{3})^{2}-{4}^{2}=9+6\sqrt{2}-16=6\sqrt{2}-7 > 0$, $\therefore$$\dfrac{\sqrt{6}}{2}-1-(1-\dfrac{\sqrt{3}}{2})=\dfrac{\sqrt{6}+\sqrt{3}-4}{2} > 0$, $\therefore$$\dfrac{\sqrt{6}}{2}-1 > 1-\dfrac{\sqrt{3}}{2}$, $\therefore$由一元二次函数的性质可知$g(\dfrac{\sqrt{6}}{2}) < g(\dfrac{\sqrt{3}}{2})$, $\because$$\dfrac{\sqrt{6}}{2}-1-(1-\dfrac{\sqrt{2}}{2})=\dfrac{\sqrt{6}+\sqrt{2}-4}{2}$, 而$(\sqrt{6}+\sqrt{2})^{2}-{4}^{2}=4\sqrt{3}-8 < 0$, $\therefore$$\dfrac{\sqrt{6}}{2}-1 < 1-\dfrac{\sqrt{2}}{2}$,$\therefore$$g(\dfrac{\sqrt{6}}{2}) > g(\dfrac{\sqrt{2}}{2})$, 综合可得$g(\dfrac{\sqrt{2}}{2}) < g(\dfrac{\sqrt{6}}{2}) < g(\dfrac{\sqrt{3}}{2})$,又$y=e^{x}$为增函数, $\therefore a < c < b$,即$b > c > a$. 故选:$A$. 点评:本题考查利用函数的单调性比较大小,作差比较法的应用,化归转化思想,属中档题.
2023年高考数学甲卷-文10<-->2023年高考数学甲卷-文12
全网搜索"2023年高考数学甲卷-文11"相关
|