面向未来,活在当下! 收藏夹
我的
首页 > 数学 > 高考题 > 2022 > 2022年全国乙理

2022年高考数学乙卷-理9

(5分)已知球$O$的半径为1,四棱锥的顶点为$O$,底面的四个顶点均在球$O$的球面上,则当该四棱锥的体积最大时,其高为(  )
A.$\dfrac{1}{3}$              B.$\dfrac{1}{2}$              C.$\dfrac{\sqrt{3}}{3}$              D.$\dfrac{\sqrt{2}}{2}$
分析:由题意可知,当四棱锥为正四棱锥时,其体积最大,设底面边长为$a$,由勾股定理可知该四棱锥的高$h=\sqrt{1-\dfrac{{a}^{2}}{2}}$,所以该四棱锥的体积$V=\dfrac{1}{3}{a}^{2}\sqrt{1-\dfrac{{a}^{2}}{2}}$,再利用基本不等式即可求出$V$的最大值,以及此时$a$的值,进而求出$h$的值.
解:对于圆内接四边形,如图所示,

${{S}_{ABCD}}=\dfrac{1}{2}AC\cdot BD\cdot sin\theta \dfrac{1}{2}2r\cdot 2r\cdot sin90{}^^\circ =2{{r}^{2}}$,
当且仅当$AC$,$BD$为圆的直径,且$AC\bot BD$时,等号成立,此时四边形$ABCD$为正方形,
$\therefore$当该四棱锥的体积最大时,底面一定为正方形,设底面边长为$a$,底面所在圆的半径为$r$,
则$r=\dfrac{\sqrt{2}}{2}a$,
$\therefore$该四棱锥的高$h=\sqrt{1-\dfrac{{a}^{2}}{2}}$,
$\therefore$该四棱锥的体积$V=\dfrac{1}{3}{a}^{2}\sqrt{1-\dfrac{{a}^{2}}{2}}=\dfrac{4}{3}\sqrt{\dfrac{{a}^{2}}{4}\cdot \dfrac{{a}^{2}}{4}\cdot (1-\dfrac{{a}^{2}}{2})}\leqslant \dfrac{4}{3}\sqrt{(\dfrac{\dfrac{{a}^{2}}{4}+\dfrac{{a}^{2}}{4}+1-\dfrac{{a}^{2}}{2}}{3})^{3}}=\dfrac{4}{3}\sqrt{(\dfrac{1}{3})^{3}}=\dfrac{4\sqrt{3}}{27}$,
当且仅当$\dfrac{{a}^{2}}{4}=1-\dfrac{{a}^{2}}{2}$,即${a}^{2}=\dfrac{4}{3}$时,等号成立,
$\therefore$该四棱锥的体积最大时,其高$h=\sqrt{1-\dfrac{{a}^{2}}{2}}=\sqrt{1-\dfrac{2}{3}}=\dfrac{\sqrt{3}}{3}$,
故选:$C$.

点评:本题主要考查了四棱锥的结构特征,考查了基本不等式的应用,属于中档题.
来顶一下
返回首页
返回首页
收藏知识
收藏知识
收藏知识
打印
相关知识
    无相关信息
发表笔记 共有条笔记
验证码:
学习笔记(共有 0 条)
开心教练从2004年开始自费开设这个网站. 为了可以持续免费提供这些内容, 并且没有广告干扰,请大家随意打赏,谢谢!,
(微信中可直接长按微信打赏二维码。)
微信 支付宝