2021年高考数学浙江19<-->2021年高考数学浙江21
20.(15分)已知数列{an}的前n项和为Sn,a1=−94,且4Sn+1=3Sn−9(n∈N∗). (Ⅰ)求数列{an}的通项公式; (Ⅱ)设数列{bn}满足3bn+(n−4)an=0(n∈N∗),记{bn}的前n项和为Tn,若Tn⩽λbn对任意n∈N∗恒成立, 求实数λ的取值范围. 分析:(Ⅰ)首先利用递推关系式确定数列为等比数列,然后结合等比数列的通项公式可得数列的通项公式; (Ⅱ)首先错位相减求得Tn的值,然后分离参数利用恒成立的结论分类讨论即可求得实数λ的取值范围. 解:(Ⅰ)由4Sn+1=3Sn?9 可得4Sn=3Sn?1?9(n⩾2), 两式作差,可得:4an+1=3an, ∴\dfrac{{a}_{n+1}}{{a}_{n}}=\dfrac{3}{4}, 很明显,\dfrac{{a}_{2}}{{a}_{1}}=\dfrac{3}{4}, 所以数列\{a_{n}\} 是以?\dfrac{9}{4}为首项,\dfrac{3}{4}为公比的等比数列, 其通项公式为:{a}_{n}=(?\dfrac{9}{4})\times {(\dfrac{3}{4})}^{n?1}=?3\times {(\dfrac{3}{4})}^{n}. (Ⅱ)由3b_{n}+(n?4)a_{n}=0,得{b}_{n}=?\dfrac{n?4}{3}{a}_{n}=(n?4){(\dfrac{3}{4})}^{n}, {T}_{n}=?3\times \dfrac{3}{4}?2\times {(\dfrac{3}{4})}^{2}?1\times {(\dfrac{3}{4})}^{3}+\cdots +(n?5){(\dfrac{3}{4})}^{n?1}+(n?4)\cdot {(\dfrac{3}{4})}^{n}, \dfrac{3}{4}{T}_{n}=?3\times {(\dfrac{3}{4})}^{2}?2\times {(\dfrac{3}{4})}^{3}?1\times {(\dfrac{3}{4})}^{4}+\cdots +(n?5)\cdot {(\dfrac{3}{4})}^{n}+(n?4)\cdot {(\dfrac{3}{4})}^{n+1}, 两式作差可得: \dfrac{1}{4}{T}_{n}=?3\times \dfrac{3}{4}+{(\dfrac{3}{4})}^{2}+{(\dfrac{3}{4})}^{3}+{(\dfrac{3}{4})}^{4}+\cdots {(\dfrac{3}{4})}^{n}?(n?4)\cdot {(\dfrac{3}{4})}^{n+1} =?\dfrac{9}{4}+\dfrac{\dfrac{9}{16}[1?{(\dfrac{3}{4})}^{n?1}]}{1?\dfrac{3}{4}}?(n?4){(\dfrac{3}{4})}^{n+1} =?\dfrac{9}{4}+\dfrac{9}{4}?4{(\dfrac{3}{4})}^{n+1}?(n?4)\cdot {(\dfrac{3}{4})}^{n+1}=?n\cdot {(\dfrac{3}{4})}^{n+1}, 则{T}_{n}=?4n\cdot {(\dfrac{3}{4})}^{n+1}. 据此可得?4n\cdot {(\dfrac{3}{4})}^{n+1}\leqslant \lambda (n?4){(\dfrac{3}{4})}^{n} 恒成立,即\lambda (n?4)+3n\geqslant 0 恒成立. n=4时不等式成立; n<4时,\lambda \leqslant ?\dfrac{3n}{n?4}=?3?\dfrac{12}{n?4},由于n=1时{(?3?\dfrac{12}{n?4})}_{min}=1,故\lambda \leqslant 1; n>4时,\lambda \geqslant ?\dfrac{3n}{n-4}=?3?\dfrac{12}{n?4},而?3?\dfrac{12}{n?4}<?3,故:\lambda \geqslant ?3; 综上可得,\{\lambda \vert ?3\leqslant \lambda \leqslant 1\}. 点评:本题主要考查由递推关系式求数列的通项公式的方法,错位相减求和的方法,数列中的恒成立问题,分类讨论的数学思想等知识,属于中等题.
2021年高考数学浙江19<-->2021年高考数学浙江21
全网搜索"2021年高考数学浙江20"相关
|