面向未来,活在当下! 收藏夹
我的
首页 > 数学 > 高考题 > 2021 > 2021年浙江

2021年高考数学浙江14

14.(6分)在$\Delta ABC$中,$\angle B=60\circ$,$AB=2$,$M$是$BC$的中点,$AM=2\sqrt{3}$,则$AC=$____;$\cos \angle MAC=$____.
分析:在$\Delta ABM$、$\Delta ABC$和$\Delta AMC$中用余弦定理即可解决此题.
解:在$\Delta ABM$中:$AM^{2}=BA^{2}+BM^{2}-2BA\cdot BM\cos 60\circ$,$\therefore (2\sqrt{3})^{2}=2^{2}+BM^{2}-2\times 2\cdot BM\cdot \dfrac{1}{2}$,$\therefore BM^{2}-2BM-8=0$,解得:$BM=4$或$-2$(舍去).
$\because$点$M$是$BC$中点,$\therefore MC=4$,$BC=8$,在$\Delta ABC$中:$AC^{2}=2^{2}+8^{2}-2\times 2\times 8\cos 60\circ =52$,$\therefore AC=2\sqrt{13}$;
在$\Delta AMC$中:$\cos \angle MAC=\dfrac{(2\sqrt{3})^{2}+(2\sqrt{13})^{2}-{4}^{2}}{2\times 2\sqrt{3}{\times 2\sqrt{13}}}=\dfrac{2\sqrt{39}}{13}$.
故答案为:$2\sqrt{13}$;$\dfrac{2\sqrt{39}}{13}$.
点评:本题考查余弦定理应用,考查数学运算能力,属于中档题.
来顶一下
返回首页
返回首页
收藏知识
收藏知识
收藏知识
打印
相关知识
    无相关信息
发表笔记 共有条笔记
验证码:
学习笔记(共有 0 条)
开心教练从2004年开始自费开设这个网站. 为了可以持续免费提供这些内容, 并且没有广告干扰,请大家随意打赏,谢谢!,
(微信中可直接长按微信打赏二维码。)
微信 支付宝