br>
2021年高考数学上海15<-->2021年高考数学上海17
16.(5分)已知$x_{1}$,$y_{1}$,$x_{2}$,$y_{2}$,$x_{3}$,$y_{3}$,同时满足①$x_{1}<y_{1}$,$x_{2}<y_{2}$,$x_{3}<y_{3}$;②$x_{1}+y_{1}=x_{2}+y_{2}=x_{3}+y_{3}$;③$x_{1}y_{1}+x_{3}y_{3}=2x_{2}y_{2}$,以下哪个选项恒成立( ) A.$2x_{2}<x_{1}+x_{3}$ B.$2x_{2}>x_{1}+x_{3}$ C.$x_{2}^{2}<x_{1}x_{3}$ D.$x_{2}^{2}>x_{1}x_{3}$ 分析:设$\left\{\begin{array}{l}{{x}_{1}=m-a}\\ {{y}_{1}=m+a}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{2}=m-b}\\ {{y}_{2}=m+b}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{3}=m-c}\\ {{y}_{3}=m+c}\end{array}\right.$,根据题意,则有$\left\{\begin{array}{l}{{a}^{2}+{c}^{2}=2{b}^{2}}\\ {{m}^{2}>{b}^{2}}\end{array}\right.$,可得$x_{1}+x_{3}-2x_{2}=2b-(a+c)$,通过求解$(2b)^{2}-(a+c)^{2}>0$,可得$x_{1}+x_{3}-2x_{2}=2b-(a+c)>0$,可得$A$正确,$B$错误;利用作差法可得$x_{1}x_{3}-x_{2}^{2}=(2b-a-c)m-\dfrac{(a-c)^{2}}{2}$,而上面已证$(2b-a-c)>0$,因无法知道$m$的正负,可得该式子的正负无法恒定,即无法判断$CD$,即可得解. 解:设$x_{1}+y_{1}=x_{2}+y_{2}=x_{3}+y_{3}=2m$, $\left\{\begin{array}{l}{{x}_{1}=m-a}\\ {{y}_{1}=m+a}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{2}=m-b}\\ {{y}_{2}=m+b}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{3}=m-c}\\ {{y}_{3}=m+c}\end{array}\right.$, 根据题意,应该有$\left\{\begin{array}{l}{a\ne b\ne c}\\ {a,b,c>0}\end{array}\right.$, 且$m^{2}-a^{2}+m^{2}-c^{2}=2(m^{2}-b^{2})>0$, 则有$\left\{\begin{array}{l}{{a}^{2}+{c}^{2}=2{b}^{2}}\\ {{m}^{2}>{b}^{2}}\end{array}\right.$, 则$x_{1}+x_{3}-2x_{2}=(m-a)+(m-c)-2(m-b)=2b-(a+c)$, 因为$(2b)^{2}-(a+c)^{2}=2(a^{2}+c^{2})-(a+c)^{2}>0$, 所以$x_{1}+x_{3}-2x_{2}=2b-(a+c)>0$, 所以$A$项正确,$B$错误. $x_{1}x_{3}-x_{2}^{2}=(m-a)(m-c)-(m-b)^{2}=(2b-a-c)m+ac-b^{2}=(2b-a-c)m-\dfrac{(a-c)^{2}}{2}$,而上面已证$(2b-a-c)>0$, 因为不知道$m$的正负, 所以该式子的正负无法恒定. 故选:$A$. 点评:本题主要考查不等关系与不等式的应用,考查了方程思想和转化思想,属于中档题.
2021年高考数学上海15<-->2021年高考数学上海17
全网搜索"2021年高考数学上海16"相关
|