2021年高考数学上海14<-->2021年高考数学上海16
15.(5分)已知f(x)=3sinx+2,对任意的x1∈[0,π2],都存在x2∈[0,π2],使得f(x1)=2f(x2+θ)+2成立,则下列选项中,θ可能的值是( ) A.3π5 B.4π5 C.6π5 D.7π5 分析:由题意可知,x1∈[0,π2],即sinx1∈[0,1],可得f(x1)∈[2,5],将存在任意的x1∈[0,π2],都存在x2∈[0,π2],使得f(x)=2f(x+θ)+2成立,转化为f(x2+θ)min⩽0,f(x2+θ)max⩾32,又由f(x)=3sinx+2,可得sin(x2+θ)min⩽−23,sin(x2+θ)max⩾−16,再将选项中的值,依次代入验证,即可求解. 解:∵,\dfrac{\pi }{2}], \therefore \sin x_{1}\in [0,1], \therefore f(x_{1})\in [2,5], \because都存在x_{2}\in [0,\dfrac{\pi }{2}],使得f(x_{1})=2f(x_{2}+\theta )+2成立, \therefore f(x_{2}+\theta )_{min}\leqslant 0,f({x}_{2}+\theta )_{max}\geqslant \dfrac{3}{2}, \because f(x)=3\sin x+2, \therefore\sin ({x}_{2}+\theta )_{min}\leqslant -\dfrac{2}{3},\sin ({x}_{2}+\theta )_{max}\geqslant -\dfrac{1}{6}, y=\sin x在x\in [\dfrac{\pi }{2},\dfrac{3\pi }{2}]上单调递减, 当\theta =\dfrac{3\pi }{5}时,{x}_{2}+\theta \in [\dfrac{3\pi }{5},\dfrac{11\pi }{10}], \therefore\sin ({x}_{2}+\theta )=\sin \dfrac{11\pi }{10}>\sin \dfrac{7\pi }{6}=-\dfrac{1}{2},故A选项错误, 当\theta =\dfrac{4\pi }{5}时,{x}_{2}+\theta \in [\dfrac{4\pi }{5},\dfrac{13\pi }{10}], \therefore\sin ({x}_{2}+\theta )_{min}=\sin \dfrac{13\pi }{10}<\sin \dfrac{5\pi }{4}=-\dfrac{\sqrt{2}}{2}<-\dfrac{2}{3}, \sin ({x}_{2}+\theta )_{max}=\sin \dfrac{4\pi }{5}>0,故B选项正确, 当\theta =\dfrac{6\pi }{5}时,x_{2}+\theta \in [\dfrac{6\pi }{5},\dfrac{17\pi }{10}], \sin (x_{2}+\theta )_{max}=\sin \dfrac{6\pi }{5}<\sin \dfrac{13\pi }{12}=\dfrac{\sqrt{2}-\sqrt{6}}{4}<-\dfrac{1}{6},故C选项错误, 当\theta =\dfrac{7\pi }{5}时,{x}_{2}+\theta \in [\dfrac{7\pi }{5},\dfrac{19\pi }{10}], \sin (x_{2}+\theta )_{max}=\sin \dfrac{19\pi }{10}<\sin \dfrac{23\pi }{12}=\dfrac{\sqrt{2}-\sqrt{6}}{4}<-\dfrac{1}{6},故D选项错误. 故选:B. 点评:本题考查了三角函数的单调性,以及恒成立问题,需要学生有较综合的知识,属于中档题.
2021年高考数学上海14<-->2021年高考数学上海16
全网搜索"2021年高考数学上海15"相关
|