2013年普通高等学校招生全国统一考试(北京卷):文数第16题(2013北京卷计算题)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气质量重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天。
(1)求此人到【答案详解】 |
2013年普通高等学校招生全国统一考试(北京卷):文数第17题(2013北京卷计算题)(本小题满分14分)如图,在四棱锥中,,,,平面底面,,和分别是和的中点,求证:(1)底面;(2)平面;(3)平面平面。【出处】2013年普通高等学校招生全国统一考试(北京卷):文数第17题【答案】(1)因为平面底面,且垂直于这两个平面的交线,所【答案详解】 |
2013年普通高等学校招生全国统一考试(北京卷):文数第18题(2013北京卷计算题)(本题满分13分)已知函数。(1)若函数在点处与直线相切,求与的值;(2)若曲线与直线有两个不同的交点,求的取值范围。【出处】2013年普通高等学校招生全国统一考试(北京卷):文数第18题【答案】由,所以。(1)因为曲线在【答案详解】 |
2013年普通高等学校招生全国统一考试(北京卷):文数第19题(2013北京卷计算题)(本小题满分14分)直线与椭圆相交与,两点,是坐标原点。(1)当点的坐标为,且四边形为菱形时,求的长;(2)当点在上且不是的顶点时,证明:四边形不可能为菱形。【出处】2013年普通高等学校招生全国统一考试(北京卷):文数第【答案详解】 |
2013年普通高等学校招生全国统一考试(北京卷):文数第20题(2013北京卷计算题)(本题满分13分)给定数列。对,该数列前项的最大值记为,后项的最小值记为,。(1)设数列为3,4,7,1,写出的值;(2)设是公比大于1的等比数列,且,证明:是等比数列;(3)是公差大于0的等差数列,且,证明:是等差数列。【出处】2013年普【答案详解】 |