面向未来,活在当下! 收藏夹
我的
首页 > 数学 > 高考题 > 2011 > 2011年山东文数

2011年普通高等学校招生全国统一考试(山东卷):文数第21题

(2011山东卷计算题)

(本小题满分12分)

某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为立方米,且。假设该容器的建造费用仅与其表面积有关。已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为)千元。设该容器的建造费用为千元。

(Ⅰ)写出关于的函数表达式,并求该函数的定义域;

(Ⅱ)求该容器的建造费用最小时的

【出处】
2011年普通高等学校招生全国统一考试(山东卷):文数第21题
【答案】

(Ⅰ)由题意可知,即,则。容器的建造费用为,即,定义域为

(Ⅱ),令,得。令

(1)当时, ,当时,,函数为减函数,当有最小值;

(2)当时,,当时,;当

此时当有最小值。

【解析】

本题主要考查函数以及导数在研究函数性质中的应用。

(Ⅰ)根据容器的容积为平方米,可建立等式(*),根据容器的建造费用=圆柱形部分建造费用+半球形部分建造费用,即可建立关于的表达式,利用(*)式消去即可。

(Ⅱ)对(Ⅰ)中的函数表达式求导,利用导数分类讨论函数的单调性,从而求出容器建造费用最小时的

【考点】
函数导数在研究函数中的应用
来顶一下
返回首页
返回首页
收藏知识
收藏知识
收藏知识
打印
相关知识
2011年普通高等学校招生全国统一考试(山东卷):文数第21题
    无相关信息
发表笔记 共有条笔记
验证码:
学习笔记(共有 0 条)
开心教练从2004年开始自费开设这个网站. 为了可以持续免费提供这些内容, 并且没有广告干扰,请大家随意打赏,谢谢!,
(微信中可直接长按微信打赏二维码。)
微信 支付宝