面向未来,活在当下! 收藏夹
我的
首页 > 数学 > 高中题型 > 高考数学必做百题(文)

高考数学必做百题第22题(文科2017版)

022.已知函数$f(x)={{x}^{2}}+2mx+2,x\in [-5,5]$

(1)当$m=-2$时,求$f(x)$的最大值和最小值;

(2)求实数$m$的取值范围,使$y=f(x)$在区间$[-5,5]$上是单调函数;

(3)在(1)的条件下,设$g(x)=f(x)+a-5$,若函数$g(x)$在区间$[0,4]$上有且仅有一个零点,求实数$a$的取值范围。

解:(1)当$m=-2$时,

$f(x)={{x}^{2}}+2mx+2={{x}^{2}}\text{-}4x+2={{(x-2)}^{2}}-2$,

∵$x\in \left[ -5,5 \right]$,

∴当$x\in \left[ -5,2 \right]$时,函数$f(x)$递减;当$x\in [2,5]$时,函数$f(x)$递增,

∴$f{{(x)}_{\max }}=f(-5)=47$,$f{{(x)}_{\min }}=f(2)=-2$。

(2)∵$f(x)={{(x+m)}^{2}}+2-{{m}^{2}}$,

当$-m\le -5$,即$m\ge 5$时,$f\left( x \right)$在$\left[ -5,5 \right]$递增;

当$-m\ge 5$,即$m\le -5$时,$f\left( x \right)$在$\left[ -5,5 \right]$递减,

∴函数$y=f(x)$在区间$[-5,5]$上是单调函数时,

$m$的范围为$\left( -\infty ,-5 \right]\bigcup \left[ 5,+\infty  \right)$。

(3)∵$g(x)=f(x)+a-5$

∴$g(x)={{x}^{2}}-4x-3+a$$={{(x-2)}^{2}}-7+a$。

函数$g(x)[0,4]$上有且只有一个零点,当且仅当$\Delta =0$,∴$a=7$。

∴当$a=7$时,函数$g(x)$在区间$[0,4]$上有且仅有一个零点。

来顶一下
返回首页
返回首页
收藏知识
收藏知识
收藏知识
打印
相关知识
    无相关信息
发表笔记 共有条笔记
验证码:
学习笔记(共有 0 条)
开心教练从2004年开始自费开设这个网站. 为了可以持续免费提供这些内容, 并且没有广告干扰,请大家随意打赏,谢谢!,
(微信中可直接长按微信打赏二维码。)
微信 支付宝