br>
2024年高考数学北京11<-->2024年高考数学北京13
(5分)已知$\alpha \in [\dfrac{\pi }{6},\dfrac{\pi }{3}]$,且$\alpha$与$\beta$的终边关于原点对称,则$\cos \beta$的最大值为____. 分析:先求出$\beta$的范围,再结合余弦函数的单调性,即可求解. 解:$\alpha$与$\beta$的终边关于原点对称可得, $\alpha +\pi +2k\pi =\beta$,$k\in Z$, $\cos \beta =\cos (\alpha +\pi +2k\pi )=-\cos \alpha$, $\alpha \in [\dfrac{\pi }{6},\dfrac{\pi }{3}]$,$\cos \alpha \in [\dfrac{1}{2}$,$\dfrac{\sqrt{3}}{2}]$, 所以$\cos \beta \in [-\dfrac{\sqrt{3}}{2}$,$-\dfrac{1}{2}]$, 故当$\alpha =\dfrac{\pi }{3}$,$\beta =2k\pi +\dfrac{4\pi }{3}$,$k\in Z$时,$\cos \beta$的最大值为$-\dfrac{1}{2}$. 故答案为:$-\dfrac{1}{2}$. 点评:本题主要考查余弦函数的单调性,属于基础题.
2024年高考数学北京11<-->2024年高考数学北京13
全网搜索"2024年高考数学北京12"相关
|