2023年高考数学天津18<-->2023年高考数学天津20
(15分)已知{an}是等差数列,a2+a5=16,a5−a3=4. (Ⅰ)求{an}的通项公式和2n−1∑i=2n−1ai; (Ⅱ)已知{bn}为等比数列,对于任意k∈N∗,若2k−1⩽n⩽2k−1,则bk<an<bk+1. (i)当k⩾2时,求证:2k−1<bn<2k+1; (ii)求{bn}的通项公式及其前n项和. 答案:(Ⅰ)an=2n+1(n∈N⋅),2n−1∑i=2n−1ai=3×4n−1. (Ⅱ)(i)证明见解析; (ii)bn=2n,Tn=2n+1−2. 分析:(Ⅰ)建立方程组求出首项和公差即可求解. (Ⅱ)根据数列递推关系,利用极限思想分别求出公比和首项,即可得到结论. 解:(Ⅰ)∵{an}是等差数列,a2+a5=16,a5−a3=4. ∴{a1+d+a1+4d=2a1+5d=16a1+4d−a1−2d=2d=4,得d=2,a1=3, 则{an}的通项公式an=3+2(n−1)=2n+1(n∈N⋅), 2n−1∑i=2n−1ai中的首项为ai=2×2n−1+1=2n+1,项数为2n−1−2n−1+1=2n−2n−1=2×2n−1−2n−1=2n−1, 则2n−1∑i=2n−1ai=2n−1(2n+1)+2n−1(2n−1−1)2×2=2n−1(2n+1)+2n−1(2n−1−1)=2n−1(2n+1+2n−1−1)=2n−1(2n+2n−1)=2n−1×3×2n−1=3×4n−1. (Ⅱ)(i)∵2k−1⩽n⩽2k−1,∴2k⩽2n⩽2k+1−2,1+2k⩽2n+1⩽2k+1−1, 即1+2k⩽an⩽2k+1−1, 当k⩾2时,∵bk<an<bk+1. ∴bk<1+2k,且bk+1>2k+1−1, 即bk>2k−1, 综上2k−1<bk<1+2k, 即2k−1<bn<2k+1成立. (ii)∵2k−1<bk<2k+1成立, ∵{bn}为等比数列,∴设公比为q, 当k⩾2时,2k+1−1<bk+1<2k+1+1,12k+1<1bk<12k−1, 则2k+1−12k+1<bk+1bk<2k+1+12k−1, 即2(2k+1)−12k+1<bk+1bk<2(2k−1)+32k−1, 即2−12k+1<q<2+32k−1, 当k→+∞,2−12k+1→2,2+32k−1→2, ∴q=2, ∵k⩾2时,2k−1<bk<2k+1, ∴2k−1<b12k−1<2k+1, 即2k−12k−1<b1<2k+12k−1, 即2−12k−1<b1<2+12k−1, 当k→+∞,2−12k−1→2,2+12k−1→2, 则b1=2, 则bn=2×2n−1=2n,即{bn}的通项公式为bn=2n, 则{bn}的其前n项和Tn=2(1−2n)1−2=2n+1−2. 点评:本题主要考查等比数列和等差数列的通项公式以及求和公式的应用,利用方程组法以及数列的递推关系进行求解是解决本题的关键,是中档题.
2023年高考数学天津18<-->2023年高考数学天津20
全网搜索"2023年高考数学天津19"相关
|