br>
2023年高考数学乙卷-文19<-->2023年高考数学乙卷-文21
(12分)已知函数$f(x)=(\dfrac{1}{x}+a)\ln (1+x)$. (1)当$a=-1$时,求曲线$y=f(x)$在点$(1$,$f(x))$处的切线方程; (2)若函数$f(x)$在$(0,+\infty )$单调递增,求$a$的取值范围. 答案:(1)$(\ln 2)x+y-\ln 2=0$; (2)$[\dfrac{1}{2},+\infty )$. 分析:(1)根据已知条件,先对$f(x)$求导,再结合导数的几何意义,即可求解; (2)先对$f(x)$求导,推得$(-\dfrac{1}{{x}^{2}})\ln (x+1)+(\dfrac{1}{x}+a)\cdot \dfrac{1}{x+1}\geqslant 0$,构造函数$g(x)=ax^{2}+x-(x+1)\ln (x+1)(x > 0)$,通过多次利用求导,研究函数的单调性,并对$a$分类讨论,即可求解. 解:(1)当$a=-1$时, 则$f(x)=(\dfrac{1}{x}-1)\ln (1+x)$, 求导可得,$f'(x)=-\dfrac{1}{{x}^{2}}\ln (1+x)+(\dfrac{1}{x}-1)\cdot \dfrac{1}{x+1}$, 当$x=1$时,$f$(1)$=0$, 当$x=-1$时,$f'$(1)$=-\ln 2$, 故曲线$y=f(x)$在点$(1$,$f(x))$处的切线方程为:$y-0=-\ln 2(x-1)$,即$(\ln 2)x+y-\ln 2=0$; (2)$f(x)=(\dfrac{1}{x}+a)\ln (1+x)$, 则$f'(x)=(-\dfrac{1}{{x}^{2}})\ln (x+1)+(\dfrac{1}{x}+a)\cdot \dfrac{1}{x+1}(x > -1)$, 函数$f(x)$在$(0,+\infty )$单调递增, 则$(-\dfrac{1}{{x}^{2}})\ln (x+1)+(\dfrac{1}{x}+a)\cdot \dfrac{1}{x+1}\geqslant 0$,化简整理可得,$-(x+1)\ln (x+1)+x+ax^{2}\geqslant 0$, 令$g(x)=ax^{2}+x-(x+1)\ln (x+1)(x > 0)$, 求导可得,$g'(x)=2ax-\ln (x+1)$, 当$a\leqslant 0$时, 则$2ax\leqslant 0$,$\ln (x+1) > 0$, 故$g'(x) < 0$,即$g(x)$在区间$(0,+\infty )$上单调递减, $g(x) < g(0)=0$,不符合题意, 令$m(x)=g'(x)=2ax-\ln (x+1)$, 则$m'(x)=2a-\dfrac{1}{x+1}$, 当$a\geqslant \dfrac{1}{2}$,即$2a\geqslant 1$时, $\dfrac{1}{x+1} < 1$,$m'(x) > 0$, 故$m(x)$在区间$(0,+\infty )$上单调递增,即$g'(x)$在区间$(0,+\infty )$上单调递增, 所以$g'(x) > g'(0)=0$,$g(x)$在区间$(0,+\infty )$上单调递增, $g(x) > g(0)=0$,符合题意, 当$0 < a < \dfrac{1}{2}$时,令$m'(x)=2a-\dfrac{1}{x+1}=0$,解得$x=\dfrac{1}{2a}-1$, 当$x\in (0,\dfrac{1}{2a}-1)$时,$m'(x) < 0$,$m(x)$在区间$(0,\dfrac{1}{2a}-1)$上单调递减,即$g'(x)$单调递减, $g'(0)=0$, 当$x\in (0,\dfrac{1}{2a}-1)$时,$g'(x) < g'(0)=0$,$g(x)$单调递减, $\because g(0)=0$, $\therefore$当$x\in (0,\dfrac{1}{2a}-1)$时,$g(x) < g(0)=0$,不符合题意, 综上所述,$a$的取值范围为$[\dfrac{1}{2},+\infty )$. 点评:本题主要考查利用导数研究函数的单调性,考查转化能力,属于难题.
2023年高考数学乙卷-文19<-->2023年高考数学乙卷-文21
全网搜索"2023年高考数学乙卷-文20"相关
|