面向未来,活在当下! 收藏夹
我的
首页 > 数学 > 高考题 > 2023 > 2023年全国乙理

2023年高考数学乙卷-理20

(12分)已知椭圆$C:\dfrac{y^2}{a^2}+\dfrac{x^2}{b^2}=1(a > b > 0)$的离心率为$\dfrac{\sqrt{5}}{3}$,点$A(-2,0)$在$C$上.
(1)求$C$的方程;
(2)过点$(-2,3)$的直线交$C$于点$P$,$Q$两点,直线$AP$,$AQ$与$y$轴的交点分别为$M$,$N$,证明:线段$MN$的中点为定点.
答案:(1)椭圆$C$的方程为$\dfrac{{y}^{2}}{9}+\dfrac{{x}^{2}}{4}=1$;
(2)$MN$的中点为定点$(0,3)$,证明过程见解析.
分析:(1)由题意列关于$a$,$b$,$c$的方程组,求得$a$,$b$,$c$的值,可得椭圆$C$的方程;
(2)设$PQ:y-3=k(x+2)$,即$y=kx+2k+3$,$k < 0$,$P(x_{1}$,$y_{1})$,$Q(x_{2}$,$y_{2})$,联立直线方程与椭圆方程,化为关于$x$的一元二次方程,利用根与系数的关系求得$x_{1}+x_{2}$与$x_{1}x_{2}$的值,写出直线$AP$、$AQ$的方程,求得$M$与$N$的坐标,再由中点坐标公式即可证明$MN$的中点为定点.
解:(1)由题意,$\left\{\begin{array}{l}{\dfrac{c}{a}=\dfrac{\sqrt{5}}{3}}\\ {b=2}\\ {{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=3}\\ {b=2}\\ {c=\sqrt{5}}\end{array}\right.$.
$\therefore$椭圆$C$的方程为$\dfrac{{y}^{2}}{9}+\dfrac{{x}^{2}}{4}=1$;
证明:(2)如图,

要使过点$(-2,3)$的直线交$C$于点$P$,$Q$两点,则$PQ$的斜率存在且小于0,
设$PQ:y-3=k(x+2)$,即$y=kx+2k+3$,$k < 0$,$P(x_{1}$,$y_{1})$,$Q(x_{2}$,$y_{2})$,
联立$\left\{\begin{array}{l}{y=kx+2k+3}\\ {\dfrac{{y}^{2}}{9}+\dfrac{{x}^{2}}{4}=1}\end{array}\right.$,得$(4k^{2}+9)x^{2}+8k(2k+3)x+16k(k+3)=0$.
△$=[8k(2k+3)]^{2}-4(4k^{2}+9)\cdot 16k(k+3)=-1728k > 0$.
${x}_{1}+{x}_{2}=\dfrac{-8k(2k+3)}{4{k}^{2}+9}$,${x}_{1}{x}_{2}=\dfrac{16k(k+3)}{4{k}^{2}+9}$,
直线$AP:y=\dfrac{{y}_{1}}{{x}_{1}+2}(x+2)$,取$x=0$,得$M(0,\dfrac{2{y}_{1}}{{x}_{1}+2})$;
直线$AQ:y=\dfrac{{y}_{2}}{{x}_{2}+2}(x+2)$,取$x=0$,得$N(0,\dfrac{2{y}_{2}}{{x}_{2}+2})$.
$\therefore$$\dfrac{2{y}_{1}}{{x}_{1}+2}+\dfrac{2{y}_{2}}{{x}_{2}+2}=\dfrac{2{y}_{1}({x}_{2}+2)+2{y}_{2}({x}_{1}+2)}{({x}_{1}+2)({x}_{2}+2)}$
$=2\dfrac{(k{x}_{1}+2k+3)({x}_{2}+2)(k{x}_{2}+2k+3)({x}_{1}+2)}{{x}_{1}{x}_{2}+2({x}_{1}+{x}_{2})+4}$
$=2\dfrac{2k{x}_{1}{x}_{2}+(4k+3)({x}_{1}+{x}_{2})+4(2k+3)}{{x}_{1}{x}_{2}+2({x}_{1}+{x}_{2})+4}$
$=2\dfrac{2k\cdot \dfrac{16k(k+3)}{4{k}^{2}+9}+(4k+3)\cdot \dfrac{-8k(2k+3)}{4{k}^{2}+9}+4(2k+3)}{\dfrac{16k(k+3)}{4{k}^{2}+9}+2\cdot \dfrac{-8k(2k+3)}{4{k}^{2}+9}+4}$
$=2\dfrac{32{k}^{3}+96{k}^{2}-64{k}^{3}-96{k}^{2}-48{k}^{2}-72k+32{k}^{3}+72k+48{k}^{2}+108}{16{k}^{2}+48k-32{k}^{2}-48k+16{k}^{2}+36}$
$=2\times \dfrac{108}{36}=6$.
$\therefore MN$的中点为$(0,3)$,为定点.
点评:本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,考查运算求解能力,是中档题.
来顶一下
返回首页
返回首页
收藏知识
收藏知识
收藏知识
打印
相关知识
    无相关信息
发表笔记 共有条笔记
验证码:
学习笔记(共有 0 条)
开心教练从2004年开始自费开设这个网站. 为了可以持续免费提供这些内容, 并且没有广告干扰,请大家随意打赏,谢谢!,
(微信中可直接长按微信打赏二维码。)
微信 支付宝