br>
2022年高考数学浙江21<-->返回列表
(15分)设函数$f(x)=\dfrac{e}{2x}+\ln x(x > 0)$. (Ⅰ)求$f(x)$的单调区间; (Ⅱ)已知$a$,$b\in R$,曲线$y=f(x)$上不同的三点$(x_{1}$,$f(x_{1}))$,$(x_{2}$,$f(x_{2}))$,$(x_{3}$,$f(x_{3}))$处的切线都经过点$(a,b)$.证明: (ⅰ)若$a > e$,则$0 < b-f$(a)$ < \dfrac{1}{2}(\dfrac{a}{e}-1)$; (ⅱ)若$0 < a < e$,$x_{1} < x_{2} < x_{3}$,则$\dfrac{2}{e}+\dfrac{e-a}{6{e^2}} < \dfrac{1}{x_1}+\dfrac{1}{x_3} < \dfrac{2}{a}-\dfrac{e-a}{6{e^2}}$. (注$:e=2.71828\ldots$是自然对数的底数) 分析:(Ⅰ)求出导数,利用导数的性质能求出函数的单调区间. (Ⅱ)$(i)$设切点分别为$(x_{1}$,$f(x_{1}))$,$(x_{2}$,$f(x_{2}))$,$(x_{3}$,$f(x_{3}))$,则$f(x_{i})-b=f\prime (x_{i})(x_{i}-a)$,$(i=1$,2,$3)$,方程$f(x)-b=f\prime (x)(x-a)$有3个不同的根,该方程整理为$(\dfrac{1}{x}-\dfrac{a}{2{x}^{2}})(x-a)-\dfrac{e}{2x}-\ln x+b=0$,设$g(x)=(\dfrac{1}{x}-\dfrac{e}{2{x}^{2}})(x-a)-\dfrac{e}{2x}-\ln x+b$,则$g\prime (x)=-\dfrac{1}{{x}^{3}}(x-e)(x-a)$,利用导数性质能证明$0 < b-f(a) < \dfrac{1}{2}(\dfrac{a}{e}-1)$. $(ii)$当$0 < a < e$时,$g(x)$在$(0,a)$,$(e,+\infty )$上为减函数,在$(a,e)$上为增函数,设$x_{1} < x_{2} < x_{3}$,推导出$\dfrac{a}{2e}+1 < b < \dfrac{a}{2e}+\ln a$,设$t=\dfrac{e}{x},\dfrac{a}{e}=m\in (0,1)$,则方程$1-\dfrac{a+e}{x}+\dfrac{ea}{2{x}^{2}}-\ln x+b=0$,即为$-(m+1)t+\dfrac{m}{2}{t}^{2}+\ln t+b=0$,由此能证明$0 < a < e$,$x_{1} < x_{2} < x_{3}$,则$\dfrac{2}{e}+\dfrac{e-a}{6{e^2}} < \dfrac{1}{x_1}+\dfrac{1}{x_3} < \dfrac{2}{a}-\dfrac{e-a}{6{e^2}}$. 解:(Ⅰ)$\because$函数$f(x)=\dfrac{e}{2x}+\ln x(x > 0)$, $\therefore$${f}'(x)=-\dfrac{e}{2{x}^{2}}+\dfrac{1}{x}=\dfrac{2x-e}{2{x}^{2}}$,$(x > 0)$, 由${f}'(x)=\dfrac{2x-e}{2{x}^{2}} > 0$,得$x > \dfrac{e}{2}$,$\therefore f(x)$在$(\dfrac{e}{2}$,$+\infty )$上单调递增; 由${f}'(x)=\dfrac{2x-e}{2{x}^{2}} < 0$,得$0 < x < \dfrac{e}{2}$,$\therefore f(x)$在$(0,\dfrac{e}{2})$上单调递减. (Ⅱ)$(i)$证明:$\because$过$(a,b)$有三条不同的切线, 设切点分别为$(x_{1}$,$f(x_{1}))$,$(x_{2}$,$f(x_{2}))$,$(x_{3}$,$f(x_{3}))$, $\therefore f(x_{i})-b=f\prime (x_{i})(x_{i}-a)$,$(i=1$,2,$3)$,$\therefore$方程$f(x)-b=f\prime (x)(x-a)$有3个不同的根, 该方程整理为$(\dfrac{1}{x}-\dfrac{e}{2{x}^{2}})(x-a)-\dfrac{e}{2x}-\ln x+b=0$, 设$g(x)=(\dfrac{1}{x}-\dfrac{e}{2{x}^{2}})(x-a)-\dfrac{e}{2x}-\ln x+b$, 则$g\prime (x)=\dfrac{1}{x}-\dfrac{e}{2{x}^{2}}+(-\dfrac{1}{{x}^{2}}+\dfrac{e}{{x}^{3}})(x-a)-\dfrac{1}{x}+\dfrac{e}{2{x}^{2}}=-\dfrac{1}{{x}^{3}}(x-e)(x-a)$, 当$0 < x < e$或$x > a$时,$g\prime (x) < 0$;当$e < x < a$时,$g\prime (x) > 0$, $\therefore g(x)$在$(0,e)$,$(a,+\infty )$上为减函数,在$(e,a)$上为增函数, $\because g(x)$有3个不同的零点,$\therefore g$(e)$ < 0$且$g$(a)$ > 0$, $\therefore (\dfrac{1}{e}-\dfrac{e}{2{e}^{2}})(e-a)-\dfrac{e}{2e}-\ln e+b < 0$,且$(\dfrac{1}{a}-\dfrac{e}{2{a}^{2}})(a-a)-\dfrac{e}{2a}-\ln a+b > 0$, 整理得到$b < \dfrac{a}{2e}+1$且$b > \dfrac{e}{2a}+\ln a=f(a)$, 此时,$b < \dfrac{a}{2e}+1$,且$b > \dfrac{e}{2a}+\ln a=f(a)$, 此时,$b-f(a)-\dfrac{1}{2}(\dfrac{a}{e}-1) < \dfrac{a}{2e}+1-(\dfrac{e}{2a}+\ln a)-\dfrac{e}{2a}-\ln a+b > 0$, 整理得$b < \dfrac{a}{2e}+1$,且$b > \dfrac{e}{2a}+\ln a=f(a)$, 此时,$b-f$(a)$-\dfrac{1}{2}(\dfrac{a}{e}-1) < \dfrac{a}{2e}+1-(\dfrac{e}{2a}+\ln a)-\dfrac{a}{2e}+\dfrac{1}{2}=\dfrac{3}{2}-\dfrac{e}{2a}-\ln a$, 设$\mu$(a)为$(e,+\infty )$上的减函数,$\therefore \mu$(a)$ < \dfrac{3}{2}-\dfrac{e}{2e}-\ln e=0$, $\therefore$$0 < b-f(a) < \dfrac{1}{2}(\dfrac{a}{e}-1)$. $(ii)$当$0 < a < e$时,同$(i)$讨论,得: $g(x)$在$(0,a)$,$(e,+\infty )$上为减函数,在$(a,e)$上为增函数, 不妨设$x_{1} < x_{2} < x_{3}$,则$0 < x_{1} < a < x_{2} < e < x_{3}$, $\because g(x)$有3个不同的零点,$\therefore g$(a)$ < 0$,且$g$(e)$ > 0$, $\therefore (\dfrac{1}{e}-\dfrac{e}{2{e}^{2}})(e-a)-\dfrac{e}{2e}-\ln e+b > 0$,且$(\dfrac{1}{a}-\dfrac{e}{2{a}^{2}})(a-a)-\dfrac{e}{2a}-\ln a+b < 0$, 整理得$\dfrac{a}{2e}+1 < b < \dfrac{a}{2e}+\ln a$, $\because x_{1} < x_{2} < x_{3}$,$\therefore 0 < x_{1} < a < x_{2} < e < x_{3}$, $\because g(x)=1-\dfrac{a+e}{x}+\dfrac{ea}{2{x}^{2}}-\ln x+b$, 设$t=\dfrac{e}{x},\dfrac{a}{e}=m\in (0,1)$,则方程$1-\dfrac{a+e}{x}+\dfrac{ea}{2{x}^{2}}-\ln x+b=0$即为: $-\dfrac{a+e}{e}t+\dfrac{a}{2e}{t}^{2}+\ln t+b=0$,即为$-(m+1)t+\dfrac{m}{2}{t}^{2}+\ln t+b=0$, 记${t}_{1}=\dfrac{e}{{x}_{1}},{t}_{2}=\dfrac{e}{{x}_{2}},{t}_{3}=\dfrac{e}{{x}_{3}}$, 则$t_{1}$,$t_{2}$,$t_{3}$为$-(m+1)t+\dfrac{m}{2}{t}^{2}+\ln t+b=0$有三个不同的根, 设$k=\dfrac{{t}_{1}}{{t}_{3}}=\dfrac{{x}_{3}}{{x}_{1}} > \dfrac{e}{a} > 1$,$m=\dfrac{a}{e} < 1$, 要证:$\dfrac{2}{e}+\dfrac{e-a}{6{e}^{2}} < \dfrac{1}{{x}_{1}}+\dfrac{1}{{x}_{3}} < \dfrac{2}{a}-\dfrac{e-a}{6{e}^{2}}$, 即证$2+\dfrac{e-a}{6e} < {t}_{1}+{t}_{3} < \dfrac{2e}{a}-\dfrac{e-a}{6e}$, 即证:${t}_{1}+{t}_{3}-2-\dfrac{2}{m} < \dfrac{(m-13)({m}^{2}-m+12)}{36m({t}_{1}+{t}_{3})}$, 而$-(m+1){t}_{1}+\dfrac{m}{2}{{t}_{1}}^{2}+\ln {t}_{1}+b=0$,且$-(m+1){t}_{3}+\dfrac{m}{2}{{t}_{3}}^{2}+\ln {t}_{3}+b=0$, $\therefore$$\ln {t}_{1}-\ln {t}_{3}+\dfrac{m}{2}({{t}_{1}}^{2}-{{t}_{3}}^{2})-(m+1)(t_{1}-t_{3})=0$, $\therefore$${t}_{1}+{t}_{3}-2-\dfrac{2}{m}=-\dfrac{2}{m}\times \dfrac{\ln {t}_{1}-\ln {t}_{3}}{{t}_{1}-{t}_{3}}$, $\therefore$即证$-\dfrac{2}{m}\times \dfrac{\ln {t}_{1}-\ln {t}_{3}}{{t}_{1}-{t}_{3}} < \dfrac{(m-13)({m}^{2}-m+12)}{36m({t}_{1}+{t}_{3})}$, 即证$\dfrac{({t}_{1}+{t}_{3})\ln \dfrac{{t}_{1}}{{t}_{3}}}{{t}_{1}-{t}_{3}}+\dfrac{(m-13)({m}^{2}-m+12)}{72} > 0$, 即证$\dfrac{(k+1)\ln k}{k-1}+\dfrac{(m-13)({m}^{2}-m+12)}{72} > 0$, 记$\varphi (k)=\dfrac{(k+1)\ln k}{k-1},k > 1$,则$\varphi (k)=\dfrac{1}{(k-1)^{2}}(k-\dfrac{1}{k}-2\ln k) > 0$, $\therefore \varphi (k)$在$(1,+\infty )$为增函数,$\therefore \varphi (k) > \varphi (m)$, $\therefore$$\dfrac{(k+1)\ln k}{k-1}+\dfrac{(m-13)({m}^{2}-m+12)}{72} > \dfrac{(m+1)\ln m}{m-1}+\dfrac{(m-13)({m}^{2}-m+12)}{72}$, 设$\omega (m)=\ln m+\dfrac{(m-1)(m-13)({m}^{2}-m+12)}{72(m+1)}$,$0 < m < 1$, 则$\omega \prime (x)=\dfrac{(m-1)^{2}(3{m}^{3}-20{m}^{2}-49m+72)}{72m(+1)^{2}} > \dfrac{(m-1)^{2}(3{m}^{3}+3)}{72m(m+1)^{2}} > 0$, $\therefore \omega (m)$在$(0,1)$上是增函数,$\therefore \omega (m) < \omega$(1)$=0$, $\therefore \ln m+\dfrac{(m-1)(m-13)({m}^{2}-m+12)}{72(m+1)} < 0$, 即$\dfrac{(m+1)\ln m}{m-1}+\dfrac{(m-13)({m}^{2}-m+12)}{72} > 0$, $\therefore$若$0 < a < e$,$x_{1} < x_{2} < x_{3}$,则$\dfrac{2}{e}+\dfrac{e-a}{6{e^2}} < \dfrac{1}{x_1}+\dfrac{1}{x_3} < \dfrac{2}{a}-\dfrac{e-a}{6{e^2}}$. 点评:本题考查函数的单调区间的求法,考查不等式的证明,考查导数的性质、函数的单调性、极值、零点、换元法、构造法等基础知识,考查运算求解能力,是难题.
2022年高考数学浙江21<-->返回列表
全网搜索"2022年高考数学浙江22"相关
|