br>
2022年高考数学天津19<-->返回列表
(15分)已知$a$,$b\in R$,函数$f(x)=e^{x}-a\sin x$,$g(x)=b\sqrt{x}$. (1)求函数$y=f(x)$在$(0$,$f(0))$处的切线方程; (2)若$y=f(x)$和$y=g(x)$有公共点. (ⅰ)当$a=0$时,求$b$的取值范围; (ⅱ)求证:$a^{2}+b^{2} > e$. 分析:(1)利用导数的几何意义及直线的斜截式方程即可求解; (2)(ⅰ)将$y=f(x)$和$y=g(x)$有公共点转化为$b=\dfrac{{e}^{x}}{\sqrt{x}}$在$(0,+\infty )$上有解,再构造函数$h(x)=\dfrac{{e}^{x}}{\sqrt{x}}$,$(x > 0)$,接着利用导数求出$h(x)$的值域,从而得$b$的取值范围; (ⅱ)令交点的横坐标为$x_{0}$,则${e}^{{x}_{0}}=a\sin {x}_{0}+b\sqrt{{x}_{0}}$,再利用柯西不等式及结论:$x > 0$时,$x > \sin x$,$e^{x} > ex$,$e^{x} > x+1$放缩即可证明. 解:(1)$\because f(x)=e^{x}-a\sin x$,$\therefore f\prime (x)=e^{x}-a\cos x$, $\therefore f(0)=1$,$f\prime (0)=1-a$, $\therefore$函数$y=f(x)$在$(0,1)$处的切线方程为$y=(1-a)x+1$; (2)(ⅰ)$\because a=0$,$\therefore f(x)=e^{x}$,又$y=f(x)$和$y=g(x)$有公共点, $\therefore$方程$f(x)=g(x)$有解, 即${e}^{x}=b\sqrt{x}$有解,显然$x\ne 0$, $\therefore b=\dfrac{{e}^{x}}{\sqrt{x}}$在$(0,+\infty )$上有解, 设$h(x)=\dfrac{{e}^{x}}{\sqrt{x}}$,$(x > 0)$, $\therefore h\prime (x)=\dfrac{{e}^{x}(2x-1)}{2x\sqrt{x}}$, $\therefore$当$x\in (0,\dfrac{1}{2})$时,$h\prime (x) < 0$;当$x\in (\dfrac{1}{2}$,$+\infty )$时,$h\prime (x) > 0$, $\therefore h(x)$在$(0,\dfrac{1}{2})$上单调递减,在$(\dfrac{1}{2}$,$+\infty )$上单调递增, $\therefore$$h(x)_{min}=h(\dfrac{1}{2})=\sqrt{2e}$,且当$x\rightarrow 0$时,$h(x)\rightarrow +\infty$;当$x\rightarrow +\infty$时,$h(x)\rightarrow +\infty$, $\therefore h(x)\in [\sqrt{2e}$,$+\infty )$, $\therefore b$的范围为$[\sqrt{2e}$,$+\infty )$; (ⅱ)证明:令交点的横坐标为$x_{0}$,则${e}^{{x}_{0}}=a\sin {x}_{0}+b\sqrt{{x}_{0}}$, $\therefore$由柯西不等式可得${e}^{2{x}_{0}}=(a\sin {x}_{0}+b\sqrt{{x}_{0}})^{2}\leqslant (a^{2}+b^{2})(\sin ^{2}x_{0}+x_{0})$ $\therefore a^{2}+b^{2}\geqslant \dfrac{{e}^{2{x}_{0}}}{si{n}^{2}{x}_{0}+{x}_{0}}$, 又易证$x > 0$时,$x > \sin x$,$e^{x} > ex$,$e^{x} > x+1$, $\therefore$$\dfrac{{e}^{2{x}_{0}}}{si{n}^{2}{x}_{0}+{x}_{0}}=\dfrac{{e}^{{x}_{0}}\cdot {e}^{{x}_{0}}}{si{n}^{2}{x}_{0}+{x}_{0}} > \dfrac{e{x}_{0}\cdot ({x}_{0}+1)}{{x}_{0}^{2}+{x}_{0}}=e$, 故$a^{2}+b^{2} > e$. 点评:本题考查导数的几何意义及直线的斜截式方程,将方程有解转化为函数值域,柯西不等式,常见不等式的结论,属中档题.
2022年高考数学天津19<-->返回列表
全网搜索"2022年高考数学天津20"相关
|