br>
2022年高考数学天津17<-->2022年高考数学天津19
(15分)设$\{a_{n}\}$是等差数列,$\{b_{n}\}$是等比数列,且$a_{1}=b_{1}=a_{2}-b_{2}=a_{3}-b_{3}=1$. (1)求$\{a_{n}\}$与$\{b_{n}\}$的通项公式; (2)设$\{a_{n}\}$的前$n$项和为$S_{n}$,求证:$(S_{n+1}+a_{n+1})b_{n}=S_{n+1}b_{n+1}-S_{n}b_{n}$; (3)求$\sum\limits_{k=1}^{2n}[a_{k+1}-(-1)^ka_k]b_k$. 分析:(1)设等差数列$\{a_{n}\}$的公差为$d$,等比数列$\{b_{n}\}$的公比为$q$,由$a_{1}=b_{1}=a_{2}-b_{2}=a_{3}-b_{3}=1$,可得$1+d-q=1$,$1+2d-q^{2}=1$,解得$d$,$q$,即可得出$a_{n}$. (2)由等比数列的性质及通项公式与前$n$项和的关系结合分析法能证明$(S_{n+1}+a_{n+1})b_{n}=S_{n+1}b_{n+1}-S_{n}b_{n}$; (3)先求出$[{a}_{2k}-(-1)^{2k-1}{a}_{2k-1}]b_{2k-1}+[a_{2k+1}-(-1)^{2k}_{2k}]b_{2k}=2k\cdot 4^{k}$,利用并项求和,结合错位相减法能求出结果. 解:(1)设等差数列$\{a_{n}\}$的公差为$d$,等比数列$\{b_{n}\}$的公比为$q$, $\because a_{1}=b_{1}=a_{2}-b_{2}=a_{3}-b_{3}=1$, $\therefore 1+d-q=1$,$1+2d-q^{2}=1$, 解得$d=q=2$, $\therefore a_{n}=1+2(n-1)=2n-1$,$b_{n}=2^{n-1}$. (2)证明:$\because b_{n+1}=2b_{n}\ne 0$, $\therefore$要证明$(S_{n+1}+a_{n+1})b_{n}=S_{n+1}b_{n+1}-S_{n}b_{n}$, 即证明$(S_{n+1}+a_{n+1})b_{n}=2S_{n+1}\cdot b_{n}-S_{n}b_{n}$, 即证明$S_{n+1}+a_{n+1}=2S_{n+1}-S_{n}$, 即证明$a_{n+1}=S_{n+1}-S_{n}$, 由数列的通项公式和前$n$项和的关系得:$a_{n+1}=S_{n+1}-S_{n}$, $\therefore (S_{n+1}+a_{n+1})b_{n}=S_{n+1}b_{n+1}-S_{n}b_{n}$. (3)$\because [{a}_{2k}-(-1)^{2k-1}{a}_{2k-1}]b_{2k-1}+[a_{2k+1}-(-1)^{2k}_{2k}]b_{2k}$ $=(4k-1+4k-3)\times 2^{2k-2}+[4k+1-(4k-1)]\times 2^{2k-1}=2k\cdot 4^{k}$, $\therefore \sum\limits_{k=1}^{2n}[a_{k+1}-(-1)^ka_k]b_k=\sum\limits_{k=1}^{n}{[a_{2k}-(-1)^{2k-1}a_{2k-1}]b_{2k-1}+[a_{2k+1}-(-1)^{2k}a_{2k}]b_{2k}}$ $=\sum\limits_{k=1}^{n}2k\cdot 4^{k}$, 设$T_{n}=\sum\limits_{k=1}^{n}2k\cdot {4}^{k}$. 则${T}_{n}=2\times 4+4\times {4}^{2}+6\times {4}^{3}+\cdot \cdot \cdot +2n\times 4^{n}$,① $\therefore 4T_{n}=2\times 4^{2}+4\times 4^{3}+6\times 4^{4}+\cdot \cdot \cdot +2n\times 4^{n+1}$,② ①$-$②,得: $-3T_{n}=2(4+4^{2}+4^{3}+4^{4}+\cdot \cdot \cdot +4^{n})-2n\cdot 4^{n+1}$ $=\dfrac{2\times 4(1-{4}^{n})}{1-4}-2n\times {4}^{n+1}$ $=\dfrac{(2-6n)\cdot {4}^{n+1}-8}{3}$, $\therefore T_{n}=\dfrac{(6n-2)\cdot 4^{n+1}+8}{9}$, $\therefore \sum\limits_{k=1}^{2n}[a_{k+1}-(-1)^ka_k]b_k=\dfrac{(6n-2)\cdot 4^{n+1}+8}{9}$. 点评:本题考查了等差数列与等比数列的通项公式与求和公式、错位相减法,考查了推理能力与计算能力,属于难题.
2022年高考数学天津17<-->2022年高考数学天津19
全网搜索"2022年高考数学天津18"相关
|