br>
2022年高考数学北京4<-->2022年高考数学北京6
(4分)已知函数$f(x)=\cos ^{2}x-\sin ^{2}x$,则( ) A.$f(x)$在$(-\dfrac{\pi }{2}$,$-\dfrac{\pi }{6})$上单调递减 B.$f(x)$在$(-\dfrac{\pi }{4}$,$\dfrac{\pi }{12})$上单调递增 C.$f(x)$在$(0,\dfrac{\pi }{3})$上单调递减 D.$f(x)$在$(\dfrac{\pi }{4}$,$\dfrac{7\pi }{12})$上单调递增 分析:利用二倍角公式化简得$f(x)=\cos 2x$,周期$T=\pi$,根据余弦函数的单调性可得$f(x)$的单调递减区间为$[k\pi$,$\dfrac{\pi }{2}+k\pi ](k\in Z)$,单调递增区间为$[\dfrac{\pi }{2}+k\pi$,$\pi +k\pi ](k\in Z)$,进而逐个判断各个选项的正误即可. 解答:解:$f(x)=\cos ^{2}x-\sin ^{2}x=\cos 2x$,周期$T=\pi$, $\therefore f(x)$的单调递减区间为$[k\pi$,$\dfrac{\pi }{2}+k\pi ](k\in Z)$,单调递增区间为$[\dfrac{\pi }{2}+k\pi$,$\pi +k\pi ](k\in Z)$, 对于$A$,$f(x)$在$(-\dfrac{\pi }{2}$,$-\dfrac{\pi }{6})$上单调递增,故$A$错误, 对于$B$,$f(x)$在$(-\dfrac{\pi }{4}$,$0)$上单调递增,在$(0,\dfrac{\pi }{12})$上单调递减,故$B$错误, 对于$C$,$f(x)$在$(0,\dfrac{\pi }{3})$上单调递减,故$C$正确, 对于$D$,$f(x)$在$(\dfrac{\pi }{4}$,$\dfrac{\pi }{2})$上单调递减,在$(\dfrac{\pi }{2}$,$\dfrac{7\pi }{12})$上单调递增,故$D$错误, 故选:$C$. 点评:本题主要考查了二倍角公式,考查了余弦函数的单调性,属于基础题.
2022年高考数学北京4<-->2022年高考数学北京6
全网搜索"2022年高考数学北京5"相关
|