br>
2021年高考数学浙江21<-->返回列表
22.(15分)设$a$,$b$为实数,且$a>1$,函数$f(x)=a^{x}-bx+e^{2}(x\in R)$. (Ⅰ)求函数$f(x)$的单调区间; (Ⅱ)若对任意$b>2e^{2}$,函数$f(x)$有两个不同的零点,求$a$的取值范围; (Ⅲ)当$a=e$时,证明:对任意$b>e^{4}$,函数$f(x)$有两个不同的零点$x_{1}$,$x_{2}$,满足$x_{2}>\dfrac{blnb}{2{e}^{2}}x_{1}+\dfrac{{e}^{2}}{b}$. (注$:e=2.71828\dotsb$是自然对数的底数) 分析:(Ⅰ)对函数$f(x)$求导,然后分$b\leqslant 0$及$b>0$两种情况讨论即可得出单调性情况; (Ⅱ)易知只需$f(x)_{min}=f(\dfrac{ln\dfrac{b}{lna}}{lna})<0$即可,计算可知$b-b\cdot ln\dfrac{b}{lna}+{e}^{2}lna<0$对任意$b>2e^{2}$均成立,记$g(b)=b-b\cdot ln\dfrac{b}{lna}+{e}^{2}lna,b>2{e}^{2}$,对$g$(b)求导,然后分 $lna>2e^{2}$及$lna\leqslant 2e^{2}$两种情况讨论,求得$g$(b)的最大值,令其小于零即可得解; (Ⅲ)当$a=e$时,由$f(x)$的最小值小于零,可知其有两个零点,所证不等式可转化为${e}^{{x}_{2}}>\dfrac{{b}^{2}lnb}{2{e}^{2}}{x}_{1}$,利用单调性先证${x}_{1}<\dfrac{2{e}^{2}}{b}$,问题转化为证$x_{2}>ln(blnb)$,再利用单调性证明即可. 解:(Ⅰ)$f\prime (x)=a^{x}lna-b$, ①当$b\leqslant 0$时,由于$a>1$,则$a^{x}lna>0$,故$f\prime (x)>0$,此时$f(x)$在$R$上单调递增; ②当$b>0$时,令$f\prime (x)>0$,解得$x>\dfrac{ln\dfrac{b}{lna}}{lna}$,令$f\prime (x)<0$,解得$x<\dfrac{ln\dfrac{b}{lna}}{lna}$, $\therefore$此时$f(x)$在$(-\infty ,\dfrac{ln\dfrac{b}{lna}}{lna})$单调递减,在$(\dfrac{ln\dfrac{b}{lna}}{lna},+\infty )$单调递增; 综上,当$b\leqslant 0$时,$f(x)$的单调递增区间为$(-\infty ,+\infty )$;当$b>0$时,$f(x)$的单调递减区间为$(-\infty ,\dfrac{ln\dfrac{b}{lna}}{lna})$,单调递增区间为$(\dfrac{ln\dfrac{b}{lna}}{lna},+\infty )$; (Ⅱ)注意到$x\rarr -\infty$时,$f(x)\rarr +\infty$,当$x\rarr +\infty$时,$f(x)\rarr +\infty$, 由(Ⅰ)知,要使函数$f(x)$有两个不同的零点,只需$f(x)_{min}=f(\dfrac{ln\dfrac{b}{lna}}{lna})<0$即可, $\therefore$$a\dfrac{ln\dfrac{b}{lna}}{lna}-b\cdot \dfrac{ln\dfrac{b}{lna}}{lna}+{e}^{2}<0$对任意$b>2e^{2}$均成立, 令$t=\dfrac{ln\dfrac{b}{lna}}{lna}$,则$a^{t}-bt+e^{2}<0$,即$e^{tlna}-bt+e^{2}<0$,即${e}^{ln\dfrac{b}{lna}}-b\cdot \dfrac{ln\dfrac{b}{lna}}{lna}+{e}^{2}<0$,即$\dfrac{b}{lna}-b\cdot \dfrac{ln\dfrac{b}{lna}}{lna}+{e}^{2}<0$, $\therefore$$b-b\cdot ln\dfrac{b}{lna}+{e}^{2}lna<0$对任意$b>2e^{2}$均成立, 记$g(b)=b-b\cdot ln\dfrac{b}{lna}+{e}^{2}lna,b>2{e}^{2}$,则${g}'(b)=1-(ln\dfrac{b}{lna}+b\cdot \dfrac{lna}{b}\cdot \dfrac{1}{lna})=ln(lna)-lnb$, 令$g\prime$(b)$=0$,得$b=lna$, ①当$lna>2e^{2}$,即$a>{e}^{2{e}^{2}}$时,易知$g$(b)在$(2e^{2}$,$lna)$单调递增,在$(lna,+\infty )$单调递减, 此时$g$(b)$\leqslant g(lna)=lna-lna\cdot ln1+e^{2}lna=lna\cdot (e^{2}+1)>0$,不合题意; ②当$lna\leqslant 2e^{2}$,即$1<a\leqslant {e}^{2{e}^{2}}$时,易知$g$(b)在$(2e^{2}$,$+\infty )$单调递减, 此时$g(b)<g(2{e}^{2})=2{e}^{2}-2{e}^{2}\cdot ln\dfrac{2{e}^{2}}{lna}+{e}^{2}lna=2e^{2}-2e^{2}[ln(2e^{2})-ln(lna)]+e^{2}lna$, 故只需$2-2[ln2+2-ln(lna)]+lna\leqslant 0$,即$lna+2ln(lna)\leqslant 2+2ln2$,则$lna\leqslant 2$,即$a\leqslant e^{2}$; 综上,实数$a$的取值范围为$(1$,$e^{2}]$; (Ⅲ)证明:当$a=e$时,$f(x)=e^{x}-bx+e^{2}$,$f\prime (x)=e^{x}-b$,令$f\prime (x)=0$,解得$x=lnb>4$, 易知$f(x)_{min}=f(lnb)={e}^{lnb}-b\cdot lnb+{e}^{2}=b-blnb+{e}^{2}<b-4b+e^{2}=e^{2}-3b<e^{2}-3e^{4}=e^{2}(1-3e^{2})<0$, $\therefore f(x)$有两个零点,不妨设为$x_{1}$,$x_{2}$,且$x_{1}<lnb<x_{2}$, 由$f({x}_{2})={e}^{{x}_{2}}-b{x}_{2}+{e}^{2}=0$,可得${x}_{2}=\dfrac{{e}^{{x}_{2}}}{b}+\dfrac{{e}^{2}}{b}$, $\therefore$要证${x}_{2}>\dfrac{blnb}{2{e}^{2}}{x}_{1}+\dfrac{{e}^{2}}{b}$,只需证$\dfrac{{e}^{{x}_{2}}}{b}>\dfrac{blnb}{2{e}^{2}}{x}_{1}$,只需证${e}^{{x}_{2}}>\dfrac{{b}^{2}lnb}{2{e}^{2}}{x}_{1}$, 而$f(\dfrac{2{e}^{2}}{b})={e}^{\dfrac{2{e}^{2}}{b}}-2{e}^{2}+{e}^{2}={e}^{\dfrac{2{e}^{2}}{b}}-{e}^{2}<{e}^{\dfrac{2}{{e}^{2}}}-{e}^{2}<0$,则${x}_{1}<\dfrac{2{e}^{2}}{b}$, $\therefore$要证${e}^{{x}_{2}}>\dfrac{{b}^{2}lnb}{2{e}^{2}}{x}_{1}$,只需证${e}^{{x}_{2}}>blnb$,只需证$x_{2}>ln(blnb)$, 而$f(ln(blnb))=e^{ln(blnb)}-bln(blnb)+e^{2}=blnb-bln(blnb)+e^{2}<blnb-bln(4b)+e^{2}=b\cdot ln\dfrac{1}{4}+{e}^{2}={e}^{2}-bln4<0$, $\therefore x_{2}>ln(blnb)$,即得证. 点评:本题考查导数的综合运用,涉及了利用导数研究函数的单调性,极值及最值,考查分类讨论思想,转化思想,考查推理论证能力及运算求解能力,属于难题.
2021年高考数学浙江21<-->返回列表
全网搜索"2021年高考数学浙江22"相关
|