2017年高考数学江苏19<-->2017年高考数学江苏21
(本小题满分16分)
已知函数(,)有极值,且导函数的极值点是的零点。(极值点是指函数取极值时对应的自变量的值)
(1)求关于的函数关系式,并写出定义域;
(2)证明:;
(3)若,这两个函数的所有极值之和不小于,求的取值范围。
(1)由,得,则当时,有极小值,因为的极值点是的零点,所以,即,化简得;因为有极值,故有实根,从而,解出,而当时,除去点外,故在上是增函数,没有极值,故不符合题意,舍去;当时,有两个相异的实根,则有极值。综上所述,(其中)。
(2)把代入则原命题等价于证,即,因为,所以变形后等价于证,设,所以,设,则在上单调递增,且,所以,即,故原命题得证。
(3)设的两个极值点为,,则,为方程的两根,所以,所以,所以的两个极值之和为;由(1)得的极值点为,所以的极值为,记和所有极值之和为,则,其中由(1)得,因为在时恒成立,故在上单调递减。因为,要使,则,综上。
本题主要考查导数在研究函数中的应用。
(1)依次求出函数的一阶和二阶导函数,由题目已知条件可知一阶导函数与轴有两个交点,从而得到和的关系,由导函数在极值判断中的应用及已知条件可知,,从而得到和的等式关系,并与前面的不等式关系联立,可得的取值范围,由此可得定义域。
(2)将(1)中的函数关系式代入所要证的不等式,转化为关于的不等式,构造函数,求导并利用函数的单调性即可证明。
(3)设出函数的极值点,并利用极值与导函数的关系,结合韦达定理和(1)中的关系式,可以得到的两个极值和为,再由(1)中导函数的极值点以及导函数的表达式,可得到导函数的极值,结合已知条件可求得的取值范围。
全网搜索"2017年高考数学江苏20"相关