面向未来,活在当下! 收藏夹
我的
首页 > 数学 > 高考题 > 2015 > 2015年湖南文数

2015年高考数学湖南--文20

(2015湖南卷计算题)

(本小题满分13分)

已知抛物线的焦点也是椭圆)的一个焦点,的公共弦长为。过点的直线相交于两点,与相交于两点,且同向。

(Ⅰ)求得方程;

(Ⅱ)若,求直线的斜率。

【出处】
2015年普通高等学校招生全国统一考试(湖南卷):文数第20题
【答案】

(Ⅰ)由知其焦点坐标为。因为也是椭圆)的一个焦点,所以……①

的公共弦长为都关于轴对称,且的方程为,由此易知的公共点坐标为,所以……②,联立①②得,,故

(Ⅱ)如图,

,因而同向,且,所以,即,于是……③,

设直线斜率为,则方程为。由,得,而是这个方程的两根,所以……④

,,而是这两个方程的根,所以……⑤

将④⑤代入③,得,化简得,解得,即直线的斜率为

【解析】

本题主要考查椭圆与抛物线的性质、直线与方程。

(1)由抛物线表达式及其性质求出焦点的坐标,也是椭圆的一个焦点,所以;再求出的公共点坐标,可得,联立方程组即可得出椭圆的表达式。

(2)将坐标设出来,根据已知条件得,将坐标带入得……(*);设直线方程为,分别与抛物线、椭圆方程联立得之间的关系式,带入(*)式化简即可得出直线的斜率。

【考点】
圆锥曲线直线与方程
来顶一下
返回首页
返回首页
收藏知识
收藏知识
收藏知识
打印
相关知识
2015年普通高等学校招生全国统一考试(湖南卷):文数第20题
    无相关信息
发表笔记 共有条笔记
验证码:
学习笔记(共有 0 条)
开心教练从2004年开始自费开设这个网站. 为了可以持续免费提供这些内容, 并且没有广告干扰,请大家随意打赏,谢谢!,
(微信中可直接长按微信打赏二维码。)
微信 支付宝