(14分)已知直四棱柱$ABCD-A_{1}B_{1}C_{1}D_{1}$,$AB\bot AD$,$AB//CD$,$AB=2$,$AD=3$,$CD=4$. (1)证明:直线$A_{1}B//$平面$DCC_{1}D_{1}$; (2)若该四棱柱的体积为36,求二面角$A_{1}-BD-A$的大小.
答案:(1)证明见解答;(2)$\arctan \dfrac{2\sqrt{13}}{3}$. 分析:(1)先证明平面$A_{1}ABB_{1}//$平面$DCC_{1}D_{1}$,再根据面面平行的性质,即可证明; (2)先根据体积建立方程求出$A_{1}A=4$,再利用三垂线定理作出所求二面角的平面角,最后再解三角形,即可求解. 解:(1)证明:根据题意可知$AB//DC$,$AA_{1}//DD_{1}$,且$AB\bigcap AA_{1}=A$, $\therefore$可得平面$A_{1}ABB_{1}//$平面$DCC_{1}D_{1}$,又直线$A_{1}B\subset$平面$A_{1}ABB_{1}$, $\therefore$直线$A_{1}B//$平面$DCC_{1}D_{1}$; (2)设$AA_{1}=h$,则根据题意可得该四棱柱的体积为$\dfrac{1}{2}\times (2+4)\times 3\times h=36$, $\therefore h=4$,$\because A_{1}A\bot$底面$ABCD$,在底面$ABCD$内过$A$作$AE\bot BD$,垂足点为$E$,
则$A_{1}E$在底面$ABCD$内的射影为$AE$, $\therefore$根据三垂线定理可得$BD\bot A_{1}E$, 故$\angle A_{1}EA$即为所求, 在$\rm{Rt}\Delta ABD$中,$AB=2$,$AD=3$,$\therefore BD=\sqrt{4+9}=\sqrt{13}$, $\therefore AE=\dfrac{AB\times AD}{BD}=\dfrac{2\times 3}{\sqrt{13}}=\dfrac{6}{\sqrt{13}}$,又$A_{1}A=h=4$, $\therefore \tan \angle A_{1}EA=\dfrac{{A}_{1}A}{AE}=\dfrac{4}{\dfrac{6}{\sqrt{13}}}=\dfrac{2\sqrt{13}}{3}$, $\therefore$二面角$A_{1}-BD-A$的大小为$\arctan \dfrac{2\sqrt{13}}{3}$.
点评:本题考查线面平行的证明,面面平行的判定定理与性质,二面角的求解,三垂线定理作二面角,化归转化思想,属中档题.
|