(5分)已知$(1+2023x)^{100}+(2023-x)^{100}=a_{0}+a_{1}x+a_{2}x^{2}+\dotsb +a_{99}x^{99}+a_{100}x^{100}$,若存在$k\in \{0$,1,2,$\dotsb$,$100\}$使得$a_{k} < 0$,则$k$的最大值为 ____. 答案:49. 分析:由二项展开式的通项可得$a_{k}={C}_{100}^{k}[2023^{k}+2023^{100-k}\cdot (-1)^{k}]$,若$a_{k} < 0$,则$k$为奇数,所以$a_{k}={C}_{100}^{k}(2023^{k}-2023^{100-k})$,即$2023^{k}-2023^{100-k} < 0$,从而求出$k$的取值范围,得到$k$的最大值. 解:二项式$(1+2023x)^{100}$的通项为${T}_{r+1}{=C}_{100}^{r}(2023x)^{r}={C}_{100}^{r}\cdot 2023^{r}\cdot x^{r}$,$r\in \{0$,1,2,$\ldots$,$100\}$, 二项式$(2023-x)^{100}$的通项为${T}_{r+1}{=C}_{100}^{r}202{3}^{100-r}(-x)^{r}={C}_{100}^{r}\cdot 2023^{100-r}\cdot (-1)^{r}\cdot x^{r}$,$r\in \{0$,1,2,$\ldots$,$100\}$, $\therefore a_{k}={C}_{100}^{k}\cdot 202{3}^{k}+{C}_{100}^{k}\cdot 202{3}^{100-k}\cdot (-1)^{k}={C}_{100}^{k}[2023^{k}+2023^{100-k}\cdot (-1)^{k}]$,$k\in \{0$,1,2,$\dotsb$,$100\}$, 若$a_{k} < 0$,则$k$为奇数, 此时$a_{k}={C}_{100}^{k}(2023^{k}-2023^{100-k})$, $\therefore 2023^{k}-2023^{100-k} < 0$, $\therefore k < 100-k$, $\therefore k < 50$, 又$\because k$为奇数, $\therefore k$的最大值为49. 故答案为:49. 点评:本题主要考查了二项式定理的应用,属于中档题.
|