2023年高考数学新高考Ⅰ-17 |
|
2023-07-08 11:03:07 |
|
(10分)已知在$\Delta ABC$中,$A+B=3C$,$2\sin (A-C)=\sin B$. (1)求$\sin A$; (2)设$AB=5$,求$AB$边上的高. 答案:(1)$\dfrac{3\sqrt{10}}{10}$;(2)6. 分析:(1)由三角形内角和可得$C=\dfrac{\pi }{4}$,由$2\sin (A-C)=\sin B$,可得$2\sin (A-C)=\sin (A+C)$,再利用两角和与差的三角函数公式化简可得$\sin A=3\cos A$,再结合平方关系即可求出$\sin A$; (2)由$\sin B=\sin (A+C)$求出$\sin B$,再利用正弦定理求出$AC$,$BC$,由等面积法即可求出$AB$边上的高. 解:(1)$\because A+B=3C$,$A+B+C=\pi$, $\therefore 4C=\pi$, $\therefore C=\dfrac{\pi }{4}$, $\because 2\sin (A-C)=\sin B$, $\therefore 2\sin (A-C)=\sin [\pi -(A+C)]=\sin (A+C)$, $\therefore 2\sin A\cos C-2\cos A\sin C=\sin A\cos C+\cos A\sin C$, $\therefore \sin A\cos C=3\cos A\sin C$, $\therefore$$\dfrac{\sqrt{2}}{2}\sin A=3\times \dfrac{\sqrt{2}}{2}\cos A$, $\therefore \sin A=3\cos A$,即$\cos A=\dfrac{1}{3}\sin A$, 又$\because \sin ^{2}A+\cos ^{2}A=1$,$\therefore$$si{n}^{2}A+\dfrac{1}{9}si{n}^{2}A=1$, 解得$\sin ^{2}A=\dfrac{9}{10}$, 又$\because A\in (0,\pi )$,$\therefore \sin A > 0$, $\therefore \sin A=\dfrac{3\sqrt{10}}{10}$; (2)由(1)可知$\sin A=\dfrac{3\sqrt{10}}{10}$,$\cos A=\dfrac{1}{3}\sin A=\dfrac{\sqrt{10}}{10}$, $\therefore \sin B=\sin (A+C)=\sin A\cos C+\cos A\sin C=\dfrac{3\sqrt{10}}{10}\times \dfrac{\sqrt{2}}{2}+\dfrac{\sqrt{10}}{10}\times \dfrac{\sqrt{2}}{2}=\dfrac{2\sqrt{5}}{5}$, $\therefore$$\dfrac{AB}{\sin C}=\dfrac{AC}{\sin B}=\dfrac{BC}{\sin A}=\dfrac{5}{\sin \dfrac{\pi }{4}}=5\sqrt{2}$, $\therefore AC=5\sqrt{2}\sin B=5\sqrt{2}\times \dfrac{2\sqrt{5}}{5}=2\sqrt{10}$,$BC=5\sqrt{2}\times \sin A=5\sqrt{2}\times \dfrac{3\sqrt{10}}{10}=3\sqrt{5}$, 设$AB$边上的高为$h$, 则$\dfrac{1}{2}AB\cdot h=\dfrac{1}{2}\times AC\times BC\times \sin C$, $\therefore$$\dfrac{5}{2}h=\dfrac{1}{2}\times 2\sqrt{10}\times 3\sqrt{5}\times \dfrac{\sqrt{2}}{2}$, 解得$h=6$, 即$AB$边上的高为6. 点评:本题主要考查了两角和与差的三角函数公式,考查了正弦定理和余弦定理的应用,属于中档题.
|
|
http://x.91apu.com//shuxue/gkt/2023/2023xgk1/2023-07-08/33635.html |