2021年高考数学乙卷-理19 |
|
2022-05-03 08:09:20 |
|
19.(12分)记$S_{n}$为数列$\{a_{n}\}$的前$n$项和,$b_{n}$为数列$\{S_{n}\}$的前$n$项积,已知$\dfrac{2}{{S}_{n}}+\dfrac{1}{{b}_{n}}=2$. (1)证明:数列$\{b_{n}\}$是等差数列; (2)求$\{a_{n}\}$的通项公式. 分析:(1)由题意当$n=1$时,$b_{1}=S_{1}$,代入已知等式可得$b_{1}$的值,当$n\geqslant 2$时,将$\dfrac{{b}_{n}}{{b}_{n-1}}=S_{n}$,代入$\dfrac{2}{{S}_{n}}+\dfrac{1}{{b}_{n}}=2$,可得$b_{n}-b_{n-1}=\dfrac{1}{2}$,进一步得到数列$\{b_{n}\}$是等差数列; (2)由$a_{1}=S_{1}=b_{1}=\dfrac{3}{2}$,可得$b_{n}=\dfrac{n+2}{2}$,代入已知等式可得$S_{n}=\dfrac{n+2}{n+1}$,当$n\geqslant 2$时,$a_{n}=S_{n}-S_{n-1}=-\dfrac{1}{n(n+1)}$,进一步得到数列$\{a_{n}\}$的通项公式. 解:(1)证明:当$n=1$时,$b_{1}=S_{1}$, 由$\dfrac{2}{{b}_{1}}+\dfrac{1}{{b}_{1}}=2$,解得$b_{1}=\dfrac{3}{2}$, 当$n\geqslant 2$时,$\dfrac{{b}_{n}}{{b}_{n-1}}=S_{n}$,代入$\dfrac{2}{{S}_{n}}+\dfrac{1}{{b}_{n}}=2$, 消去$S_{n}$,可得$\dfrac{2\;{b}_{n-1}}{{b}_{n}}+\dfrac{1}{{b}_{n}}=2$,所以$b_{n}-b_{n-1}=\dfrac{1}{2}$, 所以$\{b_{n}\}$是以$\dfrac{3}{2}$为首项,$\dfrac{1}{2}$为公差的等差数列. (2)由题意,得$a_{1}=S_{1}=b_{1}=\dfrac{3}{2}$, 由(1),可得$b_{n}=\dfrac{3}{2}+(n-1)\times \dfrac{1}{2}=\dfrac{n+2}{2}$, 由$\dfrac{2}{{S}_{n}}+\dfrac{1}{{b}_{n}}=2$,可得$S_{n}=\dfrac{n+2}{n+1}$, 当$n\geqslant 2$时,$a_{n}=S_{n}-S_{n-1}=\dfrac{\;n+2}{n+1}-\dfrac{n+1}{n}=-\dfrac{1}{n(n+1)}$,显然$a_{1}$不满足该式, 所以$a_{n}=\left\{\begin{array}{l}{\dfrac{3}{2},}&{n=1}\\ {-\dfrac{1}{n(n+1)},}&{n\geqslant 2}\end{array}\right.$. 点评:本题考查了等差数列的概念,性质和通项公式,考查了方程思想,是基础题.
|
|
http://x.91apu.com//shuxue/gkt/2021/2021qgyl/2022-05-03/33243.html |