2021年高考数学乙卷-理14 |
|
2022-05-03 08:08:35 |
|
14.(5分)已知向量$\overrightarrow{a}=(1,3)$,$\overrightarrow{b}=(3,4)$,若$(\overrightarrow{a}-\lambda \overrightarrow{b})\bot \overrightarrow{b}$,则$\lambda =$____. 分析:利用向量的坐标运算求得$\overrightarrow{a}-\lambda \overrightarrow{b}=(1-3\lambda ,3-4\lambda )$,再由$(\overrightarrow{a}-\lambda \overrightarrow{b})\bot \overrightarrow{b}$,可得$(\overrightarrow{a}-\lambda \overrightarrow{b})\cdot \overrightarrow{b}=0$,即可求解$\lambda$的值. 解:因为向量$\overrightarrow{a}=(1,3)$,$\overrightarrow{b}=(3,4)$, 则$\overrightarrow{a}-\lambda \overrightarrow{b}=(1-3\lambda ,3-4\lambda )$, 又$(\overrightarrow{a}-\lambda \overrightarrow{b})\bot \overrightarrow{b}$, 所以$(\overrightarrow{a}-\lambda \overrightarrow{b})\cdot \overrightarrow{b}=3(1-3\lambda )+4(3-4\lambda )=15-25\lambda =0$, 解得$\lambda =\dfrac{3}{5}$. 故答案为:$\dfrac{3}{5}$. 点评:本题主要考查数量积的坐标运算,向量垂直的充要条件,考查方程思想与运算求解能力,属于基础题.
|
|
http://x.91apu.com//shuxue/gkt/2021/2021qgyl/2022-05-03/33238.html |