2021年高考数学乙卷-理12 |
|
2022-05-03 08:07:51 |
|
12.(5分)设$a=2ln1.01$,$b=ln1.02$,$c=\sqrt{1.04}-1$,则( ) A.$a<b<c$ B.$b<c<a$ C.$b<a<c$ D.$c<a<b$ 分析:构造函数$f(x)=2ln(1+x)-(\sqrt{1+4\;x}-1)$,$0<x<1$,$h(x)=ln(1+2x)-(\sqrt{1+4\;x}-1)$,利用导数和函数的单调性即可判断. 解:$\because a=2ln1.01=ln1.0201$,$b=ln1.02$, $\therefore a>b$, 令$f(x)=2ln(1+x)-(\sqrt{1+4\;x}-1)$,$0<x<1$, 令$\sqrt{1+4\;x}=t$,则$1<t<\sqrt{5}$ $\therefore x=\dfrac{\;{t}^{2}-1}{4}$, $\therefore g(t)=2ln(\dfrac{{t}^{2}+3}{4})-t+1=2ln(t^{2}+3)-t+1-2ln4$, $\therefore g\prime (t)=\dfrac{4t}{{t}^{2}+3}-1=\dfrac{4t-{t}^{2}-3}{{t}^{2}+3}=-\dfrac{(t-1)(t-3)}{{t}^{2}+3}>0$, $\therefore g(t)$在$(1,\sqrt{5})$上单调递增, $\therefore g(t)>g$(1)$=2ln4-1+1-2ln4=0$, $\therefore f(x)>0$, $\therefore a>c$, 同理令$h(x)=ln(1+2x)-(\sqrt{1+4\;x}-1)$, 再令$\sqrt{1+4\;x}=t$,则$1<t<\sqrt{5}$ $\therefore x=\dfrac{\;{t}^{2}-1}{4}$, $\therefore \varphi (t)=ln(\dfrac{{t}^{2}+1}{2})-t+1=ln(t^{2}+1)-t+1-ln2$, $\therefore \varphi \prime (t)=\dfrac{2t}{{t}^{2}+1}-1=\dfrac{-(t-1)^{2}}{{t}^{2}+1}<0$, $\therefore \varphi (t)$在$(1,\sqrt{5})$上单调递减, $\therefore \varphi (t)<\varphi$(1)$=ln2-1+1-ln2=0$, $\therefore h(x)<0$, $\therefore c>b$, $\therefore a>c>b$. 故选:$B$. 点评:本题考查了不等式的大小比较,导数和函数的单调性和最值的关系,考查了转化思想,属于难题.
|
|
http://x.91apu.com//shuxue/gkt/2021/2021qgyl/2022-05-03/33236.html |