91学 首页 > 数学 > 高考题 > 2021 > 2021年全国乙理 > 正文 返回 打印

2021年高考数学乙卷-理11

  2022-05-03 08:07:44  

11.(5分)设$B$是椭圆$C:\dfrac{{x}^{2}}{{a}^{2}}+\dfrac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的上顶点,若$C$上的任意一点$P$都满足$\vert PB\vert \leqslant 2b$,则$C$的离心率的取值范围是(  )
A.$[\dfrac{\sqrt{2}}{2}$,$1)$              B.$[\dfrac{1}{2}$,$1)$              C.$(0$,$\dfrac{\sqrt{2}}{2}]$              D.$(0$,$\dfrac{1}{2}]$
分析:设$P(x_{0}$,$y_{0})$,可得$\vert PB\vert ^{2}=-\dfrac{\;{c}^{2}}{{b}^{2}}y_{0}^{2}-2by_{0}+a^{2}+b^{2}$,$y_{0}\in [-b$,$b]$,结合二次函数的性质即可求出离心率的取值范围.
解:点$B$的坐标为$(0,b)$,设$P(x_{0}$,$y_{0})$,
则$\dfrac{{x}_{0}^{2}}{{a}^{2}}+\dfrac{{y}_{0}^{2}}{{b}^{2}}=1$,
$\therefore x_{0}^{2}=a^{2}(1-\dfrac{{y}_{0}^{2}}{{b}^{2}})$,
故$\vert PB\vert ^{2}=x_{0}^{2}+(y_{0}-b)^{2}=a^{2}(1-\dfrac{{y}_{0}^{2}}{{b}^{2}})+(y_{0}-b)^{2}=-\dfrac{\;{c}^{2}}{{b}^{2}}y_{0}^{2}-2by_{0}+a^{2}+b^{2}$,$y_{0}\in [-b$,$b]$,
又对称轴$y_{0}=-\dfrac{{b}^{3}}{{c}^{2}}<0$,
当$-\dfrac{{b}^{3}}{{c}^{2}}\leqslant -b$时,即$b\geqslant c$时,
则当$y_{0}=-b$时,$\vert PB\vert ^{2}$最大,此时$\vert PB\vert =2b$,
故只需要满足$-\dfrac{{b}^{3}}{{c}^{2}}\leqslant -b$,即$b^{2}\geqslant c^{2}$,则$a^{2}-c^{2}\geqslant c^{2}$,
所以$e=\dfrac{c}{a}\leqslant \dfrac{\sqrt{2}}{2}$,
又$0<e<1$,
故$e$的范围为$(0$,$\dfrac{\sqrt{2}}{2}]$,
当$-\dfrac{{b}^{3}}{{c}^{2}}>-b$时,即$b<c$时,
则当$y_{0}=-\dfrac{{b}^{3}}{{c}^{2}}$时,$\vert PB\vert ^{2}$最大,此时$\vert PB\vert ^{2}=\dfrac{{b}^{4}}{{c}^{2}}+a^{2}+b^{2}\leqslant 4b^{2}$,
则$a^{4}-4a^{2}c^{2}+4c^{4}\leqslant 0$,解得$a=\sqrt{2}c$,
所以$b=c$,
又$b<c$,
故不满足题意,
综上所述的$e$的范围为$(0$,$\dfrac{\sqrt{2}}{2}]$,
故选:$C$.
点评:本题考查了椭圆的方程和性质,考查了运算求解能力和转化与化归思想,属于中档题.

http://x.91apu.com//shuxue/gkt/2021/2021qgyl/2022-05-03/33235.html