解:(1)`lim_(n->oo)(2n^2+1)/(3n^2+2n)`=`lim_(n->oo)(2+1/n^2)/(3+2/n)=(2+0)/(3+0)=2/3`
(2)`lim_(n->oo)(sqrt(n^2+3n)-sqrt(n^2+4n))`
=`lim_(n->oo)(n^2+3n-n^2-4n)/(sqrt(n^2+3n)+sqrt(n^2+4n))`
=`lim_(n->oo)(-n/n)/(sqrt((n^2+3n)/n^2)+sqrt((n^2+4n)/n^2))`
=`lim_(n->oo)(-1)/(sqrt(1+3/n)+sqrt(1+4/n))`
=`-1/2`
(3)`lim_(n->oo)(1/n^2+4/n^2+7/n^2+…+(3n-2)/n^2)`
=`lim_(n->oo)(n(3n-1))/(2n^2)`
=`lim_(n->oo)(3n-1)/(2n)`
=`3/2`
(4)当`alpha=pi/4`时,原式`=5/2`
当`0<=alpha<pi/4`时,`0<=tanalpha<1`
`:.`原式`=lim_(n->oo)(2tan^nalpha+3)/(tan^nalpha+1)=(2xx0+3)/(0+1)=3`
当`pi/4<alpha<=pi/2`时,`0<=cotalpha<1`
`:.`原式`=lim_(n->oo)(2+3cot^nalpha)/(1+cot^nalpha)=(2+3xx0)/(1+0)=2`
评注:若求无穷项和的极限一般先求出前`n`项和的化简,再求极限;求有关三角函数式的极限时,要注意对角的范围的讨论. |