解:(1)`(tan10°-root()(3))(cos10°)/(sin50°)`
=` (tan10°-tan60°)(cos10°)/(sin50°)`
= `((sin10°)/(cos10°)-(sin60°)/(cos60°))(cos10°)/(sin50°)`
= `sin(-50°)/(cos10°cos60°)(cos10°)/(sin50°)`
= `-2`
(2)原式= `(cos15°sin9°+sin(15°-9°))/(sin15°sin9°-cos(15°-9°))`
= `(cos15°sin9°+sin15°cos9°-cos15°sin9°)/(sin15°sin9°-(cos15°cos9°+sin15°sin9°))`
= `(sin15°cos9°)/(-cos15°cos9°)`
= `-tan15°`
= `-(tan45°-tan30°)/(1+tan45°tan30°)`
= `root()(3)-2`
(3)原式= `(cos10°)/(sin10°)-4cos10°`
= `(cos10°-2sin20°)/(sin10°)`
= `(cos10°-2sin(30-10)°)/(sin10°)`
= `(2cos30°sin10°)/(sin10°)`
= `root()(3)`
评注:(1)在三角函数的恒等变形中,要始终作好“角”的文章
:
①特殊角与特殊值的转化,[例如(1)中`root()(3)`换为`tan60°`];
②角的合并[(1)中`10°`与`60°`的合并];
③角的分解[(2)中`15°`分解为`45°-30°`,(3)中`20°`分解为`30°-10°`].
(2)这类求值问题是通过适当地变换,在求值的三角函数或与特殊角的三角函数或已知其值的三角函数式之间建立其联系,从而达到求值目的. |