知识梳理
1、在两角和与差的公式中,以公式`C_(alpha+beta)`为最基本,其推导过程应熟练掌握.
如图,点`P_1、P_2、P_3、P_4`的坐标分别为`P_1(1,0)`、`P_2(cosalpha,sinalpha)`、`P_3(cos(alpha+beta),sin(alpha+beta))`、`P_4(cos(-beta),sin(-beta))`
由`P_1P_3=P_2P_4`及两点间距离公式得`2-2cos(alpha+beta)=2-2(cosalphacosbeta-sinalphasinbeta)`,
整理得`cos(alpha+beta)=cosalphacosbeta-sinalphasinbeta[C_(alpha+beta)]`,本公式中`alpha、beta`对任意的角都成立.
2、①`cos(alpha+beta)=cosalphacosbeta-sinalphasinbeta[C_(alpha+beta)]\stackrel{\以-beta代beta}{->}``cos(alpha-beta)=cosalphacosbeta+sinalphasinbeta[C_(alpha-beta)]`
`\stackrel{\由诱导公式}{->}``sin(alpha+beta)=sinalphacosbeta+cosalphasinbeta[S_(alpha+beta)]\stackrel{\以-beta代beta}{->}sin(alpha-beta)=sinalphacosbeta-cosalphasinbeta[S_(alpha-beta)]`
②`S_(alpha+beta)/[C_(alpha+beta)`可得`tan(alpha+beta)=(tanalpha+tanbeta)/(1-tanalphatanbeta)[T_(alpha+beta)]`,`S_(alpha-beta)/[C_(alpha-beta)`可得`tan(alpha-beta)=(tanalpha-tanbeta)/(1+tanalphatanbeta)[T_(alpha-beta)]`
3、`asinalpha+bcosalpha=root()(a^2+b^2)sin(alpha+varphi)`,其中`cosvarphi=a/sqrt(a^2+b^2)`,`sinvarphi=b/sqrt(a^2+b^2)`,`tanvarphi=b/a`.
`varphi`的终边所在象限由________来确定. |