解:方法一:`(1-cos^4theta-sin^4theta)/(1-cos^6theta-sin^6theta)`
= `((1-cos^2theta)(1+cos^2theta)-sin^4theta)/((1-cos^2theta)(1+cos^2theta+cos^4theta)-sin^6theta)`
= `(sin^2theta(1+cos^2theta-sin^2theta))/(sin^2theta(1+cos^2theta+cos^4theta-sin^4theta))`
= `(2cos^2theta)/(1+cos^2theta+(cos^2theta-sin^2theta)(cos^2theta+sin^2theta))`
= `(2cos^2theta)/(1-2cos^2theta-sin^2theta)`
= `(2cos^2theta)/(3cos^2theta)`
= `2/3`
方法二:原式= `((cos^2theta+sin^2theta)^2-cos^4theta-sin^4theta)/((cos^2theta+sin^2theta)^3-cos^6theta-sin^6theta)`
= `(2cos^2theta*sin^2theta)/(3cos^2thetasin^2theta(cos^2theta+sin^2theta))`
= `2/3`
评注:利用同角函数的基本关系降次时,一般先要对三角函数式进行因式分解,然后利用“1”,进行变形. |