2024年高考数学天津13<-->2024年高考数学天津15
(5分)在正方形ABCD中,边长为1.E为线段CD的三等分点,→EC=12→DE,→BE=λ→BA+μ→BC,则λ+μ=____;若F为线段BE上的动点,G为AF中点,则→AF⋅→DG的最小值为 ____.
 答案:43;−518. 分析:由题意可知→BE=→BA+→AD+→DE,再结合→EC=12→DE可得→BE=13→BA+→BC,进而求出λ,μ的值,得到λ+μ的值;设→BF=m→BE(0⩽m⩽1),可得→AF=(13m−1)→BA+m→BC,→DG=(16m−12)→BA+(12m−1)→BC,易知→BA2=1,→BA⋅→BC=0,即可求出→AF⋅→DG,再结合二次函数的性质求解即可. 解:由题意可知,→BE=→BA+→AD+→DE=→BA+→BC+23→DC=→BA+→BC−23→CD=→BA+→BC−23→BA=13→BA+→BC, ∴\lambda =\dfrac{1}{3},\mu =1, \therefore \lambda +\mu =\dfrac{4}{3}, 如图:
 设\overrightarrow{BF}=m\overrightarrow{BE}(0\leqslant m\leqslant 1), 则\overrightarrow{AF}=\overrightarrow{AB}+\overrightarrow{BF}=-\overrightarrow{BA}+m\overrightarrow{BE}=-\overrightarrow{BA}+m(\dfrac{1}{3}\overrightarrow{BA}+\overrightarrow{BC})=(\dfrac{1}{3}m-1)\overrightarrow{BA}+m\overrightarrow{BC}, \because G为AF中点, \therefore\overrightarrow{DG}=\overrightarrow{DA}+\overrightarrow{AG}=-\overrightarrow{BC}+\dfrac{1}{2}\overrightarrow{AF}=-\overrightarrow{BC}+\dfrac{1}{2}[(\dfrac{1}{3}m-1)\overrightarrow{BA}+m\overrightarrow{BC}]=(\dfrac{1}{6}m-\dfrac{1}{2})\overrightarrow{BA}+(\dfrac{1}{2}m-1)\overrightarrow{BC}, \because正方形ABCD的边长为1, \therefore{\overrightarrow{BA}}^{2}=1,\overrightarrow{BA}\cdot \overrightarrow{BC}=0, \therefore\overrightarrow{AF}\cdot \overrightarrow{DG}=[(\dfrac{1}{3}m-1)\overrightarrow{BA}+m\overrightarrow{BC}]\cdot [(\dfrac{1}{6}m-\dfrac{1}{2})\overrightarrow{BA}+(\dfrac{1}{2}m-1)\overrightarrow{BC}]=(\dfrac{1}{3}m-1)(\dfrac{1}{6}m-\dfrac{1}{2})+m(\dfrac{1}{2}m-1)=\dfrac{5}{9}{m}^{2}-\dfrac{4}{3}m+\dfrac{1}{2}, 对于函数y=\dfrac{5}{9}{m}^{2}-\dfrac{4}{3}m+\dfrac{1}{2},对称轴为m=\dfrac{6}{5}, \therefore函数y=\dfrac{5}{9}{m}^{2}-\dfrac{4}{3}m+\dfrac{1}{2}在[0,1]上单调递减, \therefore当m=1时,函数y=\dfrac{5}{9}{m}^{2}-\dfrac{4}{3}m+\dfrac{1}{2}取得最小值-\dfrac{5}{18}, 即\overrightarrow{AF}\cdot \overrightarrow{DG}的最小为-\dfrac{5}{18}. 故答案为:\dfrac{4}{3};-\dfrac{5}{18}. 点评:本题主要考查了平面向量的线性运算和数量积运算,考查了二次函数的性质,属于中档题.
2024年高考数学天津13<-->2024年高考数学天津15
全网搜索"2024年高考数学天津14"相关
|