br>
2023年高考数学乙卷-理22<-->返回列表
[选修4-5:不等式选讲](10分) 23.已知$f(x)=2\vert x\vert +\vert x-2\vert$. (1)求不等式$f(x)\leqslant 6-x$的解集; (2)在直角坐标系$xOy$中,求不等式组$\left\{{\left.\begin{array}{l}{f(x)\leqslant y}\\ {x+y-6\leqslant 0}\end{array}\right.}\right.$所确定的平面区域的面积. 答案:(1)不等式的解集为$[-2$,$2]$. (2)8. 分析:(1)根据绝对值的意义,表示成分段函数,然后解不等式即可. (2)作出不等式组对应的平面区域,求出交点坐标,根据三角形的面积公式进行求解即可. 解:(1)当$x\geqslant 2$时,$f(x)=2x+x-2=3x-2$, 当$0 < x < 2$时,$f(x)=2x-x+2=x+2$, 当$x\leqslant 0$时,$f(x)=-2x-x+2=-3x+2$, 则当$x\geqslant 2$时,由$f(x)\leqslant 6-x$得$3x-2\leqslant 6-x$,得$4x\leqslant 8$,即$x\leqslant 2$,此时$x=2$. 当$0 < x < 2$时,由$f(x)\leqslant 6-x$得$x+2\leqslant 6-x$,得$2x < 4$,即$x < 2$,此时$0 < x < 2$. 当$x\leqslant 0$时,由$f(x)\leqslant 6-x$得$-3x+2\leqslant 6-x$,得$2x\geqslant -4$,即$x\geqslant -2$,此时$-2\leqslant x\leqslant 0$. 综上$-2\leqslant x\leqslant 2$,即不等式的解集为$[-2$,$2]$. (2)不等式组$\left\{{\left.\begin{array}{l}{f(x)\leqslant y}\\ {x+y-6\leqslant 0}\end{array}\right.}\right.$等价为$\left\{\begin{array}{l}{y\geqslant 2\vert x\vert +\vert x-2\vert }\\ {x+y-6\leqslant 0}\end{array}\right.$, 作出不等式组对应的平面区域如图:
则$B(0,2)$,$D(0,6)$, 由$\left\{\begin{array}{l}{x+y-6=0}\\ {y=x+2}\end{array}\right.$,得$\left\{\begin{array}{l}{x=2}\\ {y=4}\end{array}\right.$,即$C(2,4)$, 由$\left\{\begin{array}{l}{x+y-6=0}\\ {y=-3x+2}\end{array}\right.$,得$\left\{\begin{array}{l}{x=-2}\\ {y=8}\end{array}\right.$,即$A(-2,8)$, 则阴影部分的面积$S=S_{\Delta ABD}+S_{\Delta BCD}=\dfrac{1}{2}\times (6-2)\times 2+\dfrac{1}{2}\times (6-2)\times 2=4+4=8$.
点评:本题主要考查绝对值不等式的解法以及二元一次不等式表示区域,利用分类讨论思想进行求解是解决本题的关键,是中档题.
2023年高考数学乙卷-理22<-->返回列表
全网搜索"2023年高考数学乙卷-理23"相关
|