br>
2022年高考数学甲卷-理21<-->2022年高考数学甲卷-理23
[选修4-4:坐标系与参数方程](10分) (10分)在直角坐标系$xOy$中,曲线$C_{1}$的参数方程为$\left\{\begin{array}{l}x=\dfrac{2+t}{6},\\ y=\sqrt{t}\end{array}\right.(t$为参数),曲线$C_{2}$的参数方程为$\left\{{\left.\begin{array}{l}{x=-\dfrac{2+s}{6},}\\ {y=-\sqrt{s}}\end{array}\right.}\right.(s$为参数). (1)写出$C_{1}$的普通方程; (2)以坐标原点为极点,$x$轴正半轴为极轴建立极坐标系,曲线$C_{3}$的极坐标方程为$2\cos \theta -\sin \theta =0$,求$C_{3}$与$C_{1}$交点的直角坐标,及$C_{3}$与$C_{2}$交点的直角坐标. 分析:(1)消去参数$t$,可得$C_{1}$的普通方程; (2)消去参数$s$,可得$C_{2}$的普通方程,化$C_{3}$的极坐标方程为直角坐标方程,然后联立直角坐标方程求解$C_{3}$与$C_{1}$、$C_{3}$与$C_{2}$交点的直角坐标. 解答:解:(1)由$\left\{\begin{array}{l}x=\dfrac{2+t}{6},\\ y=\sqrt{t}\end{array}\right.(t$为参数),消去参数$t$, 可得$C_{1}$的普通方程为$y^{2}=6x-2(y\geqslant 0)$; (2)由$\left\{{\left.\begin{array}{l}{x=-\dfrac{2+s}{6},}\\ {y=-\sqrt{s}}\end{array}\right.}\right.(s$为参数),消去参数$s$, 可得$C_{2}$的普通方程为$y^{2}=-6x-2(y\leqslant 0)$. 由$2\cos \theta -\sin \theta =0$,得$2\rho \cos \theta -\rho \sin \theta =0$, 则曲线$C_{3}$的直角坐标方程为$2x-y=0$. 联立$\left\{\begin{array}{l}{y=2x}\\ {{y}^{2}=6x-2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\dfrac{1}{2}}\\ {y=1}\end{array}\right.$或$\left\{\begin{array}{l}{x=1}\\ {y=2}\end{array}\right.$, $\therefore C_{3}$与$C_{1}$交点的直角坐标为$(\dfrac{1}{2}$,$1)$与$(1,2)$; 联立$\left\{\begin{array}{l}{y=2x}\\ {{y}^{2}=-6x-2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-\dfrac{1}{2}}\\ {y=-1}\end{array}\right.$或$\left\{\begin{array}{l}{x=-1}\\ {y=-2}\end{array}\right.$, $\therefore C_{3}$与$C_{2}$交点的直角坐标为$(-\dfrac{1}{2}$,$-1)$与$(-1,-2)$. 解答:本题考查简单曲线的极坐标方程,考查参数方程化普通方程,考查运算求解能力,是基础题.
2022年高考数学甲卷-理21<-->2022年高考数学甲卷-理23
全网搜索"2022年高考数学甲卷-理22"相关
|