(1)当$l$与$x$轴垂直时,$x=1$,代入椭圆得$\dfrac{1}{2}+y^2=1$,$y=\pm \dfrac{\sqrt{2}}{2}$,
所以$A(1,\dfrac{\sqrt{2}}{2})$或$A(1,-\dfrac{\sqrt{2}}{2})$,
所以$AM$的方程为$y=-\dfrac{\sqrt{2}}{2}(x-2)$或$y=\dfrac{\sqrt{2}}{2}(x-2)$。
(2)直线$l$的斜率为$0$时,$A$,$B$与椭圆左、右顶点重合,$\angle OMA =\angle OMB=0$;
直线$l$的斜率不为$0$时,设直线$l$的方程为$x=ty+1$,点$A(x_1,y_1)$,$B(x_2,y_2)$,
联立直线$l$与椭圆方程$\begin{cases}\dfrac{x^2}{2}+y^2=1\\ -x+ty+1=0\end{cases}$,
消去$y$得$(2+t^2)x^2-4x+2(1-t^2)=0$,
则$\begin{cases} x_1+x_2=-\dfrac{-4}{2+t^2}\\ x_1 x_2=\dfrac{2(1-t^2)}{2+t^2}\end{cases}$,
$y_1+y_2=-\dfrac{2t}{2+t^2}$,$y_1 y_2=\dfrac{-1}{2+t^2}$,
$x_1 y_2+x_2 y_1=2t y_1 y_2+y_1+y_2=\dfrac{-4t}{2+t^2}$,
$\begin{align}k_{AM}+k_{BM}&=\dfrac{y_1}{x_1 -2}+\dfrac{y_2}{x_2-2}\\
&=\dfrac{(x_2 y_1+x_1 y_2)-2(y_1 +y_2)}{(x_1 -2)(x_2 -2)}\\
&=\dfrac{\dfrac{-4t}{2+t^2}-2(-\dfrac{2t}{2+t^2})}{(x_1 -2)(x_2 -2)}\\
&=0\end{align}$,
所以直线$AM$与$BM$的倾斜角互补,
所以$\angle OMA=\angle OMB$。