2024年高考数学上海春20 |
|
2024-08-28 23:20:49 |
|
(18分)在平面直角坐标系$xOy$中,已知点$A$为椭圆$\Gamma :\dfrac{{x}^{2}}{6}+\dfrac{{y}^{2}}{2}=1$上一点,$F_{1}$、$F_{2}$分别为椭圆的左、右焦点. (1)若点$A$的横坐标为2,求$\vert AF_{1}\vert$的长; (2)设$\Gamma$的上、下顶点分别为$M_{1}$、$M_{2}$,记△$AF_{1}F_{2}$的面积为$S_{1}$,△$AM_{1}M_{2}$的面积为$S_{2}$,若$S_{1}\geqslant S_{2}$,求$\vert OA\vert$的取值范围. (3)若点$A$在$x$轴上方,设直线$AF_{2}$与$\Gamma$交于点$B$,与$y$轴交于点$K$,$KF_{1}$延长线与$\Gamma$交于点$C$,是否存在$x$轴上方的点$C$,使得$\overrightarrow{{F}_{1}A}+\overrightarrow{{F}_{1}B}+\overrightarrow{{F}_{1}C}=\lambda (\overrightarrow{{F}_{2}A}+\overrightarrow{{F}_{2}B}+\overrightarrow{{F}_{2}C})(\lambda \in R)$成立?若存在,请求出点$C$的坐标;若不存在,请说明理由.
答案:(1)$\dfrac{5\sqrt{6}}{3}$; (2)$(\sqrt{2},\dfrac{3\sqrt{10}}{5})$; (3)存在$C(-\dfrac{9}{4},\dfrac{\sqrt{5}}{4})$满足条件.
分析:(1)由题意,设出点$A$的坐标,将点$A$的坐标代入椭圆方程中再结合公式进行求解即可; (2)设出点$A$的坐标,结合三角形面积公式以及题目所给信息,列出等式再进行求解即可; (3)设出$A$,$B$两点的坐标,根据对称性得到点$C$的坐标,利用向量的运算以及题目所给信息求出$y_{2}+2y_{1}=0$,设出直线$AF_{2}$的方程,将直线$AF_{2}$的方程与椭圆方程联立,利用韦达定理以及点$A$在直线$AF_{2}$上,即可求出满足条件的$C$点坐标.
解:(1)因为点$A$的横坐标为2, 不妨设$A(2,y)$, 因为点$A$在椭圆$\Gamma$上, 所以$\dfrac{{2}^{2}}{6}+\dfrac{{y}^{2}}{2}=1$, 解得${y}^{2}=\dfrac{2}{3}$, 易知$F_{1}(-2,0)$, 所以$\vert A{F}_{1}\vert =\sqrt{[2-(-2)]^{2}+(y-0)^{2}}=\dfrac{5\sqrt{6}}{3}$; (2)不妨设$A(x,y)$,$xy\ne 0$, 此时${S}_{1}=\dfrac{1}{2}\vert {F}_{1}{F}_{2}\vert \vert y\vert =2\vert y\vert ,{S}_{2}=\dfrac{1}{2}\vert {M}_{1}{M}_{2}\vert \vert x\vert =\sqrt{2}\vert x\vert$, 因为$S_{1}\geqslant S_{2}$, 所以$2\vert y\vert \geqslant \sqrt{2}\vert x\vert$, 即$2y^{2}\geqslant x^{2}$, 又$\dfrac{{x}^{2}}{6}+\dfrac{{y}^{2}}{2}=1$, 所以$2y^{2}\geqslant 6-3y^{2}$, 解得$\dfrac{6}{5}\leqslant {y}^{2} < 2$, 则$\vert OA\vert =\sqrt{{x}^{2}+{y}^{2}}=\sqrt{(6-3{y}^{2})+{y}^{2}}=\sqrt{6-2{y}^{2}}$, 故$\vert OA\vert$的范围为$(\sqrt{2}$,$\dfrac{3\sqrt{10}}{5}]$; (3)不妨设$A(x_{1}$,$y_{1})$,$y_{1} > 0$,$B(x_{2}$,$y_{2})$, 由对称性可得$A$、$C$关于$y$轴对称, 所以$C(-x_{1}$,$y_{1})$, 又$F_{1}(-2,0)$,$F_{2}(2,0)$, 此时$\overrightarrow{{F}_{1}A}=({x}_{1}+2,{y}_{1}),\overrightarrow{{F}_{1}B}=({x}_{2}+2,{y}_{2}),\overrightarrow{{F}_{1}C}=(-{x}_{1}+2,{y}_{1})$, 所以$\overrightarrow{{F}_{1}A}+\overrightarrow{{F}_{1}B}+\overrightarrow{{F}_{1}C}=({x}_{2}+6,{y}_{2}+2{y}_{1})$, 同理得$\overrightarrow{{F}_{2}A}+\overrightarrow{{F}_{2}B}+\overrightarrow{{F}_{2}C}=({x}_{2}-6,{y}_{2}+2{y}_{1})$, 因为$\overrightarrow{{F}_{1}A}+\overrightarrow{{F}_{1}B}+\overrightarrow{{F}_{1}C}=\lambda (\overrightarrow{{F}_{2}A}+\overrightarrow{{F}_{2}B}+\overrightarrow{{F}_{2}C})(\lambda \in R)$, 所以$\overrightarrow{{F}_{1}A}+\overrightarrow{{F}_{1}B}+\overrightarrow{{F}_{1}C}//\overrightarrow{{F}_{2}A}+\overrightarrow{{F}_{2}B}+\overrightarrow{{F}_{2}C}$, 解得$y_{2}+2y_{1}=0$或$\left\{\begin{array}{l}{y}_{2}+2{y}_{1}\ne 0\\ {x}_{2}+6={x}_{2}-6\end{array}\right.$(无解), 不妨设直线$AF_{2}:x=my+2$, 联立$\left\{\begin{array}{l}{x=my+2}\\ {\dfrac{{x}^{2}}{6}+\dfrac{{y}^{2}}{2}=1}\end{array}\right.$,消去$x$并整理得$(m^{2}+3)y^{2}+4my-2=0$, 由韦达定理得$\left\{\begin{array}{l}{y}_{1}{y}_{2}=-2{y}_{1}^{2}=\dfrac{-2}{{m}^{2}+3}\\ {y}_{1}+{y}_{2}=-{y}_{1}=-\dfrac{4m}{{m}^{2}+3}\end{array}\right.$, 解得$m=\dfrac{\sqrt{5}}{5}$, 此时${y}_{1}=\dfrac{\sqrt{5}}{4}$, 又$x_{1}=my_{1}+2$, 解得${x}_{1}=\dfrac{9}{4}$, 此时$C(-\dfrac{9}{4},\dfrac{\sqrt{5}}{4})$. 故存在$x$轴上方的点$C(-\dfrac{9}{4},\dfrac{\sqrt{5}}{4})$,使得$\overrightarrow{{F}_{1}A}+\overrightarrow{{F}_{1}B}+\overrightarrow{{F}_{1}C}=\lambda (\overrightarrow{{F}_{2}A}+\overrightarrow{{F}_{2}B}+\overrightarrow{{F}_{2}C})(\lambda \in R)$成立. 点评:本题考查直线与圆锥曲线的综合问题,考查了逻辑推理和运算能力,属于中档题.
|
|
http://x.91apu.com//shuxue/gkt/2024/2024shc/2024-08-28/34317.html |