91学 首页 > 数学 > 高考题 > 2024 > 2024年上海春 > 正文 返回 打印

2024年高考数学上海春20

  2024-08-28 23:20:49  

(18分)在平面直角坐标系$xOy$中,已知点$A$为椭圆$\Gamma :\dfrac{{x}^{2}}{6}+\dfrac{{y}^{2}}{2}=1$上一点,$F_{1}$、$F_{2}$分别为椭圆的左、右焦点.
(1)若点$A$的横坐标为2,求$\vert AF_{1}\vert$的长;
(2)设$\Gamma$的上、下顶点分别为$M_{1}$、$M_{2}$,记△$AF_{1}F_{2}$的面积为$S_{1}$,△$AM_{1}M_{2}$的面积为$S_{2}$,若$S_{1}\geqslant S_{2}$,求$\vert OA\vert$的取值范围.
(3)若点$A$在$x$轴上方,设直线$AF_{2}$与$\Gamma$交于点$B$,与$y$轴交于点$K$,$KF_{1}$延长线与$\Gamma$交于点$C$,是否存在$x$轴上方的点$C$,使得$\overrightarrow{{F}_{1}A}+\overrightarrow{{F}_{1}B}+\overrightarrow{{F}_{1}C}=\lambda (\overrightarrow{{F}_{2}A}+\overrightarrow{{F}_{2}B}+\overrightarrow{{F}_{2}C})(\lambda \in R)$成立?若存在,请求出点$C$的坐标;若不存在,请说明理由.

答案:(1)$\dfrac{5\sqrt{6}}{3}$;
(2)$(\sqrt{2},\dfrac{3\sqrt{10}}{5})$;
(3)存在$C(-\dfrac{9}{4},\dfrac{\sqrt{5}}{4})$满足条件.

分析:(1)由题意,设出点$A$的坐标,将点$A$的坐标代入椭圆方程中再结合公式进行求解即可;
(2)设出点$A$的坐标,结合三角形面积公式以及题目所给信息,列出等式再进行求解即可;
(3)设出$A$,$B$两点的坐标,根据对称性得到点$C$的坐标,利用向量的运算以及题目所给信息求出$y_{2}+2y_{1}=0$,设出直线$AF_{2}$的方程,将直线$AF_{2}$的方程与椭圆方程联立,利用韦达定理以及点$A$在直线$AF_{2}$上,即可求出满足条件的$C$点坐标.

解:(1)因为点$A$的横坐标为2,
不妨设$A(2,y)$,
因为点$A$在椭圆$\Gamma$上,
所以$\dfrac{{2}^{2}}{6}+\dfrac{{y}^{2}}{2}=1$,
解得${y}^{2}=\dfrac{2}{3}$,
易知$F_{1}(-2,0)$,
所以$\vert A{F}_{1}\vert =\sqrt{[2-(-2)]^{2}+(y-0)^{2}}=\dfrac{5\sqrt{6}}{3}$;
(2)不妨设$A(x,y)$,$xy\ne 0$,
此时${S}_{1}=\dfrac{1}{2}\vert {F}_{1}{F}_{2}\vert \vert y\vert =2\vert y\vert ,{S}_{2}=\dfrac{1}{2}\vert {M}_{1}{M}_{2}\vert \vert x\vert =\sqrt{2}\vert x\vert$,
因为$S_{1}\geqslant S_{2}$,
所以$2\vert y\vert \geqslant \sqrt{2}\vert x\vert$,
即$2y^{2}\geqslant x^{2}$,
又$\dfrac{{x}^{2}}{6}+\dfrac{{y}^{2}}{2}=1$,
所以$2y^{2}\geqslant 6-3y^{2}$,
解得$\dfrac{6}{5}\leqslant {y}^{2} < 2$,
则$\vert OA\vert =\sqrt{{x}^{2}+{y}^{2}}=\sqrt{(6-3{y}^{2})+{y}^{2}}=\sqrt{6-2{y}^{2}}$,
故$\vert OA\vert$的范围为$(\sqrt{2}$,$\dfrac{3\sqrt{10}}{5}]$;
(3)不妨设$A(x_{1}$,$y_{1})$,$y_{1} > 0$,$B(x_{2}$,$y_{2})$,
由对称性可得$A$、$C$关于$y$轴对称,
所以$C(-x_{1}$,$y_{1})$,
又$F_{1}(-2,0)$,$F_{2}(2,0)$,
此时$\overrightarrow{{F}_{1}A}=({x}_{1}+2,{y}_{1}),\overrightarrow{{F}_{1}B}=({x}_{2}+2,{y}_{2}),\overrightarrow{{F}_{1}C}=(-{x}_{1}+2,{y}_{1})$,
所以$\overrightarrow{{F}_{1}A}+\overrightarrow{{F}_{1}B}+\overrightarrow{{F}_{1}C}=({x}_{2}+6,{y}_{2}+2{y}_{1})$,
同理得$\overrightarrow{{F}_{2}A}+\overrightarrow{{F}_{2}B}+\overrightarrow{{F}_{2}C}=({x}_{2}-6,{y}_{2}+2{y}_{1})$,
因为$\overrightarrow{{F}_{1}A}+\overrightarrow{{F}_{1}B}+\overrightarrow{{F}_{1}C}=\lambda (\overrightarrow{{F}_{2}A}+\overrightarrow{{F}_{2}B}+\overrightarrow{{F}_{2}C})(\lambda \in R)$,
所以$\overrightarrow{{F}_{1}A}+\overrightarrow{{F}_{1}B}+\overrightarrow{{F}_{1}C}//\overrightarrow{{F}_{2}A}+\overrightarrow{{F}_{2}B}+\overrightarrow{{F}_{2}C}$,
解得$y_{2}+2y_{1}=0$或$\left\{\begin{array}{l}{y}_{2}+2{y}_{1}\ne 0\\ {x}_{2}+6={x}_{2}-6\end{array}\right.$(无解),
不妨设直线$AF_{2}:x=my+2$,
联立$\left\{\begin{array}{l}{x=my+2}\\ {\dfrac{{x}^{2}}{6}+\dfrac{{y}^{2}}{2}=1}\end{array}\right.$,消去$x$并整理得$(m^{2}+3)y^{2}+4my-2=0$,
由韦达定理得$\left\{\begin{array}{l}{y}_{1}{y}_{2}=-2{y}_{1}^{2}=\dfrac{-2}{{m}^{2}+3}\\ {y}_{1}+{y}_{2}=-{y}_{1}=-\dfrac{4m}{{m}^{2}+3}\end{array}\right.$,
解得$m=\dfrac{\sqrt{5}}{5}$,
此时${y}_{1}=\dfrac{\sqrt{5}}{4}$,
又$x_{1}=my_{1}+2$,
解得${x}_{1}=\dfrac{9}{4}$,
此时$C(-\dfrac{9}{4},\dfrac{\sqrt{5}}{4})$.
故存在$x$轴上方的点$C(-\dfrac{9}{4},\dfrac{\sqrt{5}}{4})$,使得$\overrightarrow{{F}_{1}A}+\overrightarrow{{F}_{1}B}+\overrightarrow{{F}_{1}C}=\lambda (\overrightarrow{{F}_{2}A}+\overrightarrow{{F}_{2}B}+\overrightarrow{{F}_{2}C})(\lambda \in R)$成立.
点评:本题考查直线与圆锥曲线的综合问题,考查了逻辑推理和运算能力,属于中档题.

http://x.91apu.com//shuxue/gkt/2024/2024shc/2024-08-28/34317.html