91学 首页 > 数学 > 高考题 > 2024 > 2024年上海春 > 正文 返回 打印

2024年高考数学上海春10

  2024-08-28 23:15:51  

(5分)已知四棱柱$ABCD-A_{1}B_{1}C_{1}D_{1}$底面$ABCD$为平行四边形,$AA_{1}=3$,$BD=4$且$\overrightarrow{A{B}_{1}}\cdot \overrightarrow{BC}-\overrightarrow{A{D}_{1}}\cdot \overrightarrow{DC}=5$,求异面直线$AA_{1}$与$BD$的夹角 ____.

答案:$\arccos  \dfrac{5}{12}$.
分析:由题将$\overrightarrow{A{B}_{1}}\cdot \overrightarrow{BC}-\overrightarrow{A{D}_{1}}\cdot \overrightarrow{DC}=5$转化为$\overrightarrow{AA_{1}}\cdot \overrightarrow{BD}=5$即可求解.
解:如图,

因为${\overrightarrow{AB}}_{1}=\overrightarrow{AB}+\overrightarrow{A{A}_{1}},\overrightarrow{A{D}_{1}}=\overrightarrow{AD}+\overrightarrow{A{A}_{1}}$,又$\overrightarrow{A{B}_{1}}\cdot \overrightarrow{BC}-\overrightarrow{A{D}_{1}}\cdot \overrightarrow{DC}=5$,
$\therefore$$(\overrightarrow{AB}+\overrightarrow{A{A}_{1}})\cdot \overrightarrow{AD}-(\overrightarrow{AD}+\overrightarrow{A{A}_{1}})\cdot \overrightarrow{DC}=5$,
化简得$\overrightarrow{AA_{1}}\cdot \overrightarrow{BD}=5$,
$\therefore$$\overrightarrow{A{A}_{1}}\cdot \overrightarrow{BD}=3\times 4\times \cos  \theta =5$,
$\therefore$$\cos  \theta =\dfrac{5}{12}$.
异面直线$AA_{1}$与$BD$的夹角为$\arccos  \dfrac{5}{12}$.
点评:本题考查向量法求立体几何中的线线角,属于中档题.

http://x.91apu.com//shuxue/gkt/2024/2024shc/2024-08-28/34307.html