2024年高考数学上海春5 |
|
2024-08-28 23:13:40 |
|
(4分)三角形$ABC$中,$BC=2,A=\dfrac{\pi }{3},B=\dfrac{\pi }{4}$,则$AB=$____.
答案:$\dfrac{3\sqrt{2}+\sqrt{6}}{3}$. 分析:根据已知条件,结合正弦定理,即可求解. 解:三角形$ABC$中,$A+B+C=\pi ,C=\dfrac{5\pi }{12}$, $\sin C=\sin (\dfrac{\pi }{4}+\dfrac{\pi }{6})=\sin \dfrac{\pi }{4}\cos \dfrac{\pi }{6}+\cos \dfrac{\pi }{4}\sin \dfrac{\pi }{6}=\dfrac{\sqrt{2}+\sqrt{6}}{4}$, 由正弦定理$\dfrac{BC}{\sin A}=\dfrac{AB}{\sin C}$,$BC=2$,$A=\dfrac{\pi }{3}$, 故$AB=\dfrac{BC\sin C}{\sin A}=\dfrac{2\times \dfrac{\sqrt{2}+\sqrt{6}}{4}}{\dfrac{\sqrt{3}}{2}}=\dfrac{3\sqrt{2}+\sqrt{6}}{3}$. 故答案为:$\dfrac{3\sqrt{2}+\sqrt{6}}{3}$. 点评:本题主要考查正弦定理的应用,属于基础题.
|
|
http://x.91apu.com//shuxue/gkt/2024/2024shc/2024-08-28/34302.html |