2024年高考数学上海18 |
|
2024-08-28 23:09:10 |
|
(14分)已知$f(x)=\log _{a}x(a > 0,a\ne 1)$. (1)若$y=f(x)$过$(4,2)$,求$f(2x-2) < f(x)$的解集; (2)存在$x$使得$f(x+1)$、$f(ax)$、$f(x+2)$成等差数列,求$a$的取值范围.
答案:(1)$(1,2)$; (2)$(1,+\infty )$. 分析:(1)先求出函数解析式,再结合函数的单调性,即可求解; (2)根据等差数列的性质,推得$\log _{a}(x+1)+\log _{a}(x+2)=2\log _{a}(ax)$有解,再结合分离常数法,以及二次函数的性质,即可求解. 解:(1)由$y=f(x)$过$(4,2)$可得$\log _{a}4=2$, 则$a^{2}=4$,解得$a=2$(负值舍去), 因为$f(x)=\log _{2}x$在$(0,+\infty )$上是严格增函数,$f(2x-2) < f(x)$, 则$0 < 2x-2 < x$,解得$1 < x < 2$, 故所求解集为$(1,2)$; (2)因为$f(x+1)$、$f(ax)$、$f(x+2)$成等差数列, 所以$f(x+1)+f(x+2)=2f(ax)$,即$\log _{a}(x+1)+\log _{a}(x+2)=2\log _{a}(ax)$有解,化简可得$\log _a(x+1)(x+2)=\log _a(ax)^2$, 则$(x+1)(x+2)=(ax)^{2}$且$\left\{\begin{array}{l}{x+1 > 0}\\ {x+2 > 0}\\ {a > 0,a\ne 1}\\ {ax > 0}\end{array}\right.$, 故$a^2=\dfrac{(x+1)(x+2)}{x^2}$在$(0,+\infty )$上有解, 又$\dfrac{(x+1)(x+2)}{x^2}=\dfrac{2}{x^2}+\dfrac{3}{x}+1=2(\dfrac{1}{x}+\dfrac{3}{4})^2-\dfrac{1}{8}$,故在$(0,+\infty )$上,$\dfrac{(x+1)(x+2)}{x^2} > 2(0+\dfrac{3}{4})^2-\dfrac{1}{8}=1$, 故$a^{2} > 1$,解得$a < -1$或$a > 1$, 又$a > 0$,所以$a > 1$, 故$a$的取值范围为$(1,+\infty )$. 点评:本题主要考查数列与函数的综合,考查转化能力,属于中档题.
|
|
http://x.91apu.com//shuxue/gkt/2024/2024sh/2024-08-28/34294.html |