(5分)已知点$B$在点$C$正北方向,点$D$在点$C$的正东方向,$BC=CD$,存在点$A$满足$\angle BAC=16.5^\circ$,$\angle DAC=37^\circ$,则$\angle BCA=$____.(精确到0.1度)
答案:$7.8^\circ$. 分析:根据已知条件,结合正弦定理,余弦定理,即可求解. 解:在$\Delta ACD$中,根据正弦定理可得$\dfrac{AC}{\sin \angle D}=\dfrac{CD}{\sin \angle CAD}$, 设$\angle ACB=\alpha$,则$\angle ACD=90^\circ -\alpha$, 所以$\dfrac{AC}{\sin [180^\circ -(37^\circ +90^\circ -\alpha )]}=\dfrac{CD}{\sin 37^\circ }=\dfrac{AC}{\sin (90^\circ -\alpha +37^\circ )}$,① 在$\Delta ABC$中,根据正弦定理可得$\dfrac{CB}{\sin \angle BAC}=\dfrac{CA}{\sin \angle B}$, $\dfrac{BC}{\sin \angle 16.5^\circ }=\dfrac{CA}{\sin [180^\circ -(\alpha +16.5^\circ )]}=\dfrac{CA}{\sin (\alpha +16.5^\circ )}$,② 联立①②,因为$BC=CD$, 所以$\dfrac{\sin 37^\circ }{\sin (90^\circ -\alpha +37^\circ )}=\dfrac{\sin 16.5^\circ }{\sin (\alpha +16.5^\circ )}$, 解得$\angle BCA=7.8^\circ$. 故答案为:$7.8^\circ$.
点评:本题主要考查解三角形,考查转化能力,属于中档题.
|