2024年高考数学天津20 |
|
2024-08-28 22:53:49 |
|
(16分)设函数$f(x)=x\ln x$. (1)求$f(x)$图像上点$(1$,$f$(1)$)$处的切线方程; (2)若$f(x)\geqslant a(x-\sqrt{x})$在$x\in (0,+\infty )$时恒成立,求$a$的值; (3)若$x_{1}$,$x_{2}\in (0,1)$,证明$\vert f(x_1)-f(x_2)\vert \leqslant \vert x_1-x_2\vert ^\dfrac{1}{2}$. 答案:(1)$y=x-1$; (2)2; (3)详见解答过程. 分析:(1)先对函数求导,结合导数的几何意义可切线斜率,进而可求切线方程; (2)设$g(t)=a(t-1)-2\ln t$,命题等价于对任意$t\in (0,+\infty )$,都有$g(t)\geqslant 0$,利用特殊值赋值法,即可求解; (3)结合重要不等式$t-1\geqslant \ln t$可先证明对$0 < a < b$,有$\ln a+1 < \dfrac{f(b)-f(a)}{b-a} < \ln b+1$,然后结合$x_{1}$,$x_{2}$的各种情况进行证明即可. 解:(1)由于$f(x)=x\ln x$,故$f'(x)=\ln x+1$, 所以$f$(1)$=0$,$f'$(1)$=1$, 所以所求的切线经过$(1,0)$,且斜率为1, 故其方程为$y=x-1$; (2)设$h(t)=t-1-\ln t$,则$h'(t)=1-\dfrac{1}{t}=\dfrac{t-1}{t}$,从而当$0 < t < 1$时$h'(t) < 0$,当$t > 1$时$h'(t) > 0$, 所以$h(t)$在$(0$,$1]$上递减,在$[1$,$+\infty )$上递增,这就说明$h(t)\geqslant h$(1), 即$t-1\geqslant \ln t$,且等号成立当且仅当$t=1$, 设$g(t)=a(t-1)-2\ln t$, 则$f(x)-a(x-\sqrt{x})=x\ln x-a(x-\sqrt{x})=x(a(\dfrac{1}{\sqrt{x}}-1)-2\ln \dfrac{1}{\sqrt{x}})=x\cdot g(\dfrac{1}{\sqrt{x}})$. 当$x\in (0,+\infty )$时,$\dfrac{1}{\sqrt{x}}$的取值范围是$(0,+\infty )$, 所以命题等价于对任意$t\in (0,+\infty )$,都有$g(t)\geqslant 0$. 一方面,若对任意$t\in (0,+\infty )$,都有$g(t)\geqslant 0$,则对$t\in (0,+\infty )$, 有$0\leqslant g(t)=a(t-1)-2\ln t=a(t-1)+2\ln \dfrac{1}{t}\leqslant a(t-1)+2(\dfrac{1}{t}-1)=at+\dfrac{2}{t}-a-2$, 取$t=2$,得$0\leqslant a-1$,故$a\geqslant 1 > 0$. 再取$t=\sqrt{\dfrac{2}{a}}$,得$0\leqslant a\cdot \sqrt{\dfrac{2}{a}}+2\sqrt{\dfrac{a}{2}}-a-2=2\sqrt{2a}-a-2=-(\sqrt{a}-\sqrt{2})^{2}$, 所以$a=2$. 另一方面,若$a=2$,则对任意$t\in (0,+\infty )$都有$g(t)=2(t-1)-2\ln t=2h(t)\geqslant 0$,满足条件. 综合以上两个方面知$a=2$. 证明:(3)先证明一个结论:对$0 < a < b$,有$\ln a+1 < \dfrac{f(b)-f(a)}{b-a} < \ln b+1$. 证明:前面已经证明不等式$t-1\geqslant \ln t$, 故$\dfrac{b\ln b-a\ln a}{b-a}=\dfrac{a\ln b-a\ln a}{b-a}+\ln b=\dfrac{\ln \dfrac{b}{a}}{\dfrac{b}{a}-1}+\ln b < 1+\ln b$, 且$\dfrac{b\ln b-a\ln a}{b-a}=\dfrac{b\ln b-b\ln a}{b-a}+\ln a=\dfrac{-\ln \dfrac{a}{b}}{1-\dfrac{a}{b}}+\ln a > \dfrac{-(\dfrac{a}{b}-1)}{1-\dfrac{a}{b}}+\ln a=1+\ln a$, 所以$\ln a+1 < \dfrac{b\ln b-a\ln a}{b-a} < \ln b+1$, 即$\ln a+1 < \dfrac{f(b)-f(a)}{b-a} < \ln b+1$. 由$f\prime (x)=\ln x+1$,可知当$0 < x < \dfrac{1}{e}$时,$f\prime (x) < 0$,当$x > \dfrac{1}{e}$时$f\prime (x) > 0$. 所以$f(x)$在$(0,\dfrac{1}{e}]$上单调递减,在$[\dfrac{1}{e},+\infty )$上单调递增. 不妨设$x_{1}\leqslant x_{2}$,下面分三种情况(其中有重合部分)证明本题结论. 情况一:当$\dfrac{1}{e}\leqslant x_{1}\leqslant x_{2} < 1$时,有$\vert f(x_{1})-f(x_{2})\vert =f(x_{2})-f(x_{1}) < (\ln x_{2}+1)(x_{2}-x_{1}) < x_{2}-x_{1} < \sqrt{x_{2}-x_{1}}$,结论成立; 情况二:当$0 < x_{1}\leqslant x_{2}\leqslant \dfrac{1}{e}$时,有$\vert f(x_{1})-f(x_{2})\vert =f(x_{1})-f(x_{2})=x_{1}\ln x_{1}-x_{2}\ln x_{2}$ 对任意的$c\in (0,\dfrac{1}{e}]$,设$\varphi (x)=x\ln x-c\ln c-\sqrt{c-x}$,则$\varphi '{(x)}=\ln x+1+\dfrac{1}{2\sqrt{c-x}}$ 由于$\varphi '(x)$单调递增,且有$\varphi \prime (\dfrac{c}{2{e}^{1+\dfrac{1}{\sqrt{2c}}}})=\ln \dfrac{c}{2{e}^{1+\dfrac{1}{\sqrt{2c}}}}+1+\dfrac{1}{2\sqrt{c-\dfrac{c}{2{e}^{1+\dfrac{1}{\sqrt{2c}}}}}} < \ln \dfrac{1}{e^{1+\dfrac{1}{\sqrt{2c}}}}+1+\dfrac{1}{2\sqrt{c-\dfrac{c}{2}}}=-1-\dfrac{1}{\sqrt{2c}}+1+\dfrac{1}{\sqrt{2c}}=0$, 且当$x\geqslant c-\dfrac{1}{4(\ln \dfrac{2}{c}-1)^{2}}x > \dfrac{c}{2}$时,由$\dfrac{1}{2\sqrt{c-x}}\geqslant \ln \dfrac{2}{c}-1$可知, $\varphi '{(x)}=\ln x+1+\dfrac{1}{2\sqrt{c-x}} > \ln \dfrac{c}{2}+1+\dfrac{1}{2\sqrt{c-x}}=\dfrac{1}{2\sqrt{c-x}}-(\ln \dfrac{2}{c}-1)\geqslant 0$. 所以$\varphi '(x)$在$(0,c)$上存在零点$x_{0}$,再结合$\varphi '(x)$单调递增,即知$0 < x < x_{0}$时$\varphi '(x) < 0$,$x_{0} < x < c$时$\varphi '(x) > 0$ 故$\varphi (x)$在$(0$,$x_{0}]$上递减,在$[x_{0}$,$c]$上递增. ①当$x_{0}\leqslant x\leqslant c$时,有$\varphi (x)\leqslant \varphi$(c)$=0$; ②当$0 < x < x_{0}$时,由于$\sqrt{c}\ln \dfrac{1}{c}=-2f(\sqrt{c})\leqslant -2f(\dfrac{1}{e})=\dfrac{2}{e} < 1$,故我们可以取$q\in (\sqrt{c}\ln \dfrac{1}{c},1)$. 从而当$0 < x < \dfrac{c}{1-q^2}$时,由$\sqrt{c-x} > q\sqrt{c}$, 可得$\varphi (x)=x\ln x-c\ln c-\sqrt{c-x} < -c\ln c-\sqrt{c-x} < -c\ln c-q\sqrt{c}=\sqrt{c}(\sqrt{c}\ln \dfrac{1}{c}-q) < 0$, 再根据$\varphi (x)$在$(0$,$x_{0}]$上递减,即知对$0 < x < x_{0}$都有$\varphi (x) < 0$; 综合①②可知对任意$0 < x\leqslant c$,都有$\varphi (x)\leqslant 0$,即$\varphi (x)=x\ln x-c\ln c-\sqrt{c-x}\leqslant 0$. 根据$c\in (0,\dfrac{1}{e}]$和$0 < x\leqslant c$的任意性,取$c=x_{2}$,$x=x_{1}$,就得到$x_1\ln x_1-x_2\ln x_2-\sqrt{x_2-x_1}\leqslant 0$ 所以$\vert f(x_{1})-f(x_{2})\vert =f(x_{1})-f(x_{2})=x_{1}\ln x_{1}-x_{2}\ln x_{2}\leqslant \sqrt{x_{2}-x_{1}}$ 情况三:当$0 < x_{1}\leqslant \dfrac{1}{e}\leqslant x_{2} < 1$时,根据情况一和情况二的讨论, 可得$\vert f(x_{1})-f(\dfrac{1}{e})\vert \leqslant \sqrt{\dfrac{1}{e}-x_{1}}\leqslant \sqrt{x_{2}-x_{1}}$,$\vert f(\dfrac{1}{e})-f(x_{2})\vert \leqslant \sqrt{x_{2}-\dfrac{1}{e}}\leqslant \sqrt{x_{2}-x_{1}}$, 而根据$f(x)$的单调性,知$\vert f(x_{1})-f(x_{2})\vert \leqslant \vert f(x_{1})-f(\dfrac{1}{e})\vert$或$\vert f(x_{1})-f(x_{2})\vert \leqslant \vert f(\dfrac{1}{e})-f(x_{2})\vert$. 故一定有$\vert f(x_{1})-f(x_{2})\vert \leqslant \sqrt{x_{2}-x_{1}}$成立. 综上,结论成立. 点评:本题主要考查了导数几何意义在切削方程求解中的应用,还考查了由不等式恒成立求解参数范围,及不等式的证明,属于难题.
|
|
http://x.91apu.com//shuxue/gkt/2024/2024tj/2024-08-28/34276.html |