91学 首页 > 数学 > 高考题 > 2024 > 2024年天津 > 正文 返回 打印

2024年高考数学天津20

  2024-08-28 22:53:49  

(16分)设函数$f(x)=x\ln x$.
(1)求$f(x)$图像上点$(1$,$f$(1)$)$处的切线方程;
(2)若$f(x)\geqslant a(x-\sqrt{x})$在$x\in (0,+\infty )$时恒成立,求$a$的值;
(3)若$x_{1}$,$x_{2}\in (0,1)$,证明$\vert f(x_1)-f(x_2)\vert \leqslant \vert x_1-x_2\vert ^\dfrac{1}{2}$.
答案:(1)$y=x-1$;
(2)2;
(3)详见解答过程.
分析:(1)先对函数求导,结合导数的几何意义可切线斜率,进而可求切线方程;
(2)设$g(t)=a(t-1)-2\ln t$,命题等价于对任意$t\in (0,+\infty )$,都有$g(t)\geqslant 0$,利用特殊值赋值法,即可求解;
(3)结合重要不等式$t-1\geqslant \ln t$可先证明对$0 < a < b$,有$\ln a+1 < \dfrac{f(b)-f(a)}{b-a} < \ln b+1$,然后结合$x_{1}$,$x_{2}$的各种情况进行证明即可.
解:(1)由于$f(x)=x\ln x$,故$f'(x)=\ln x+1$,
所以$f$(1)$=0$,$f'$(1)$=1$,
所以所求的切线经过$(1,0)$,且斜率为1,
故其方程为$y=x-1$;
(2)设$h(t)=t-1-\ln t$,则$h'(t)=1-\dfrac{1}{t}=\dfrac{t-1}{t}$,从而当$0 < t < 1$时$h'(t) < 0$,当$t > 1$时$h'(t) > 0$,
所以$h(t)$在$(0$,$1]$上递减,在$[1$,$+\infty )$上递增,这就说明$h(t)\geqslant h$(1),
即$t-1\geqslant \ln t$,且等号成立当且仅当$t=1$,
设$g(t)=a(t-1)-2\ln t$,
则$f(x)-a(x-\sqrt{x})=x\ln x-a(x-\sqrt{x})=x(a(\dfrac{1}{\sqrt{x}}-1)-2\ln \dfrac{1}{\sqrt{x}})=x\cdot g(\dfrac{1}{\sqrt{x}})$.
当$x\in (0,+\infty )$时,$\dfrac{1}{\sqrt{x}}$的取值范围是$(0,+\infty )$,
所以命题等价于对任意$t\in (0,+\infty )$,都有$g(t)\geqslant 0$.
一方面,若对任意$t\in (0,+\infty )$,都有$g(t)\geqslant 0$,则对$t\in (0,+\infty )$,
有$0\leqslant g(t)=a(t-1)-2\ln t=a(t-1)+2\ln \dfrac{1}{t}\leqslant a(t-1)+2(\dfrac{1}{t}-1)=at+\dfrac{2}{t}-a-2$,
取$t=2$,得$0\leqslant a-1$,故$a\geqslant 1 > 0$.
再取$t=\sqrt{\dfrac{2}{a}}$,得$0\leqslant a\cdot \sqrt{\dfrac{2}{a}}+2\sqrt{\dfrac{a}{2}}-a-2=2\sqrt{2a}-a-2=-(\sqrt{a}-\sqrt{2})^{2}$,
所以$a=2$.
另一方面,若$a=2$,则对任意$t\in (0,+\infty )$都有$g(t)=2(t-1)-2\ln t=2h(t)\geqslant 0$,满足条件.
综合以上两个方面知$a=2$.
证明:(3)先证明一个结论:对$0 < a < b$,有$\ln a+1 < \dfrac{f(b)-f(a)}{b-a} < \ln b+1$.
证明:前面已经证明不等式$t-1\geqslant \ln t$,
故$\dfrac{b\ln b-a\ln a}{b-a}=\dfrac{a\ln b-a\ln a}{b-a}+\ln b=\dfrac{\ln \dfrac{b}{a}}{\dfrac{b}{a}-1}+\ln b < 1+\ln b$,
且$\dfrac{b\ln b-a\ln a}{b-a}=\dfrac{b\ln b-b\ln a}{b-a}+\ln a=\dfrac{-\ln \dfrac{a}{b}}{1-\dfrac{a}{b}}+\ln a > \dfrac{-(\dfrac{a}{b}-1)}{1-\dfrac{a}{b}}+\ln a=1+\ln a$,
所以$\ln a+1 < \dfrac{b\ln b-a\ln a}{b-a} < \ln b+1$,
即$\ln a+1 < \dfrac{f(b)-f(a)}{b-a} < \ln b+1$.
由$f\prime (x)=\ln x+1$,可知当$0 < x < \dfrac{1}{e}$时,$f\prime (x) < 0$,当$x > \dfrac{1}{e}$时$f\prime (x) > 0$.
所以$f(x)$在$(0,\dfrac{1}{e}]$上单调递减,在$[\dfrac{1}{e},+\infty )$上单调递增.
不妨设$x_{1}\leqslant x_{2}$,下面分三种情况(其中有重合部分)证明本题结论.
情况一:当$\dfrac{1}{e}\leqslant x_{1}\leqslant x_{2} < 1$时,有$\vert f(x_{1})-f(x_{2})\vert =f(x_{2})-f(x_{1}) < (\ln x_{2}+1)(x_{2}-x_{1}) < x_{2}-x_{1} < \sqrt{x_{2}-x_{1}}$,结论成立;
情况二:当$0 < x_{1}\leqslant x_{2}\leqslant \dfrac{1}{e}$时,有$\vert f(x_{1})-f(x_{2})\vert =f(x_{1})-f(x_{2})=x_{1}\ln x_{1}-x_{2}\ln x_{2}$
对任意的$c\in (0,\dfrac{1}{e}]$,设$\varphi (x)=x\ln x-c\ln c-\sqrt{c-x}$,则$\varphi '{(x)}=\ln x+1+\dfrac{1}{2\sqrt{c-x}}$
由于$\varphi '(x)$单调递增,且有$\varphi \prime (\dfrac{c}{2{e}^{1+\dfrac{1}{\sqrt{2c}}}})=\ln \dfrac{c}{2{e}^{1+\dfrac{1}{\sqrt{2c}}}}+1+\dfrac{1}{2\sqrt{c-\dfrac{c}{2{e}^{1+\dfrac{1}{\sqrt{2c}}}}}} < \ln \dfrac{1}{e^{1+\dfrac{1}{\sqrt{2c}}}}+1+\dfrac{1}{2\sqrt{c-\dfrac{c}{2}}}=-1-\dfrac{1}{\sqrt{2c}}+1+\dfrac{1}{\sqrt{2c}}=0$,
且当$x\geqslant c-\dfrac{1}{4(\ln \dfrac{2}{c}-1)^{2}}x > \dfrac{c}{2}$时,由$\dfrac{1}{2\sqrt{c-x}}\geqslant \ln \dfrac{2}{c}-1$可知,
$\varphi '{(x)}=\ln x+1+\dfrac{1}{2\sqrt{c-x}} > \ln \dfrac{c}{2}+1+\dfrac{1}{2\sqrt{c-x}}=\dfrac{1}{2\sqrt{c-x}}-(\ln \dfrac{2}{c}-1)\geqslant 0$.
所以$\varphi '(x)$在$(0,c)$上存在零点$x_{0}$,再结合$\varphi '(x)$单调递增,即知$0 < x < x_{0}$时$\varphi '(x) < 0$,$x_{0} < x < c$时$\varphi '(x) > 0$
故$\varphi (x)$在$(0$,$x_{0}]$上递减,在$[x_{0}$,$c]$上递增.
①当$x_{0}\leqslant x\leqslant c$时,有$\varphi (x)\leqslant \varphi$(c)$=0$;
②当$0 < x < x_{0}$时,由于$\sqrt{c}\ln \dfrac{1}{c}=-2f(\sqrt{c})\leqslant -2f(\dfrac{1}{e})=\dfrac{2}{e} < 1$,故我们可以取$q\in (\sqrt{c}\ln \dfrac{1}{c},1)$.
从而当$0 < x < \dfrac{c}{1-q^2}$时,由$\sqrt{c-x} > q\sqrt{c}$,
可得$\varphi (x)=x\ln x-c\ln c-\sqrt{c-x} < -c\ln c-\sqrt{c-x} < -c\ln c-q\sqrt{c}=\sqrt{c}(\sqrt{c}\ln \dfrac{1}{c}-q) < 0$,
再根据$\varphi (x)$在$(0$,$x_{0}]$上递减,即知对$0 < x < x_{0}$都有$\varphi (x) < 0$;
综合①②可知对任意$0 < x\leqslant c$,都有$\varphi (x)\leqslant 0$,即$\varphi (x)=x\ln x-c\ln c-\sqrt{c-x}\leqslant 0$.
根据$c\in (0,\dfrac{1}{e}]$和$0 < x\leqslant c$的任意性,取$c=x_{2}$,$x=x_{1}$,就得到$x_1\ln x_1-x_2\ln x_2-\sqrt{x_2-x_1}\leqslant 0$
所以$\vert f(x_{1})-f(x_{2})\vert =f(x_{1})-f(x_{2})=x_{1}\ln x_{1}-x_{2}\ln x_{2}\leqslant \sqrt{x_{2}-x_{1}}$
情况三:当$0 < x_{1}\leqslant \dfrac{1}{e}\leqslant x_{2} < 1$时,根据情况一和情况二的讨论,
可得$\vert f(x_{1})-f(\dfrac{1}{e})\vert \leqslant \sqrt{\dfrac{1}{e}-x_{1}}\leqslant \sqrt{x_{2}-x_{1}}$,$\vert f(\dfrac{1}{e})-f(x_{2})\vert \leqslant \sqrt{x_{2}-\dfrac{1}{e}}\leqslant \sqrt{x_{2}-x_{1}}$,
而根据$f(x)$的单调性,知$\vert f(x_{1})-f(x_{2})\vert \leqslant \vert f(x_{1})-f(\dfrac{1}{e})\vert$或$\vert f(x_{1})-f(x_{2})\vert \leqslant \vert f(\dfrac{1}{e})-f(x_{2})\vert$.
故一定有$\vert f(x_{1})-f(x_{2})\vert \leqslant \sqrt{x_{2}-x_{1}}$成立.
综上,结论成立.
点评:本题主要考查了导数几何意义在切削方程求解中的应用,还考查了由不等式恒成立求解参数范围,及不等式的证明,属于难题.

http://x.91apu.com//shuxue/gkt/2024/2024tj/2024-08-28/34276.html