2024年高考数学天津19 |
|
2024-08-28 22:53:13 |
|
(15分)已知数列$\{a_{n}\}$是公比大于0的等比数列,其前$n$项和为$S_{n}$,若$a_{1}=1$,$S_{2}=a_{3}-1$. (1)求数列$\{a_{n}\}$前$n$项和$S_{n}$; (2)设$b_{n}=\left\{\begin{array}{l}{k,n={a}_{k}}\\ {{b}_{n-1}+2k,{a}_{k} < n < {a}_{k+1}}\end{array}\right.$,$b_{1}=1$,其中$k$是大于1的正整数. $(i)$当$n=a_{k+1}$时,求证:$b_{n-1}\geqslant a_{k}\cdot b_{n}$; $(ii)$求$\sum\limits_{i=1}^{{S}_{n}}{b}_{i}$. 答案:(1)$S_n=2^n-1$; (2)$(i)$证证明见解析;$(ii)\sum\limits_{i=1}^{S_n}b_i=\dfrac{(3n-1)4^{n}+1}{9}$. 分析:(1)根据题目条件结合等比数列的通项公式,可以得到公比$q$,再根据等比数列求和公式即可求得$S_{n}$; (2)$(i)$根据题意可得$a_k=2^{k-1}$,$b_{n}=k+1$,$b_{n-1}=k(2^{k}-1)$,利用作差法分析即可; $(ii)$根据题意以及等差数列求和公式可得$\sum\limits_{\;i={2}^{k-1}}^{{2}^{k}-1}b_{i}=\dfrac{1}{9}[(3k-1){4}^{k}-(3k-4){4}^{k-1}]$,再用裂项相消法即可求得$\sum\limits_{i=1}^{{S}_{n}}{b}_{i}$. 解:(1)$a_{1}=1$,$S_{2}=a_{3}-1=a_{1}+a_{2}$, 可得$1+q=q^{2}-1$,整理得$q^{2}-q-2=0$, 解得$q=2$或$q=-1$, 因为数列$\{a_{n}\}$的公比大于0,所以$q=2$, 所以$S_n=\dfrac{1-2^n}{1-2}=2^n-1$; (2)$(i)$证明:由(1)可知$a_n=2^{n-1}$,且$k\in N^*$,$k\geqslant 2$, 当$n=a_{k+1}=2^{k}\geqslant 4$时,则$\left\{\begin{array}{l}{{a}_{k}={2}^{k-1} < {2}^{k}-1=n-1}\\ {n-1={a}_{k+1}-1 < {a}_{k+1}}\end{array}\right.$,即$a_{k} < n-1 < a_{k+1}$, 可知$a_k=2^{k-1}$,$b_{n}=k+1$, $b_{n-1}={b}_{{a}_{k}}+(a_{k+1}-a_{k}-1)\cdot 2k=k+2k(2^{k-1}-1)=k(2^{k}-1)$, 可得$b_{n-1}-a_{k}b_{n}=k(2^{k}-1)-(k+1)2^{k-1}=(k-1)2^{k-1}-k\geqslant 2(k-1)-k=k-2\geqslant 0$, 当且仅当$k=2$时,等号成立, 所以$b_{n-1}\geqslant a_{k}\cdot b_{n}$; $(ii)S_n=2^n-1=a_{n+1}-1$, 若$n=1$,则$S_{1}=1$,$b_{1}=1$, 若$n\geqslant 2$,则$a_{k+1}-a_{k}=2^{k-1}$, 当$2^{k-1} < i\leqslant 2^{k}-1$时,$b_{i}-b_{i-1}=2k$,可知$\{b_{i}\}$为等差数列, 可得$\sum\limits_{\;i={2}^{k-1}}^{{2}^{k}-1}b_{i}=k\cdot 2^{k-1}+2k\dfrac{{2}^{k-1}({2}^{k-1}-1)}{2}=k\cdot 4^{k-1}=\dfrac{1}{9}[(3k-1){4}^{k}-(3k-4){4}^{k-1}]$, $\sum\limits_{i=1}^{{S}_{n}}{b}_{i}=1+\dfrac{1}{9}[5\times 4^{2}-2\times 4+8\times 4^{3}-5\times 4^{2}+...+(3n-1)4^{n}-(3n-4)4^{n-1}]=\dfrac{(3n-1){4}^{n}+1}{9}$, 且$n=1$,符合上式,综上所述:$\sum\limits_{i=1}^{S_n}b_i=\dfrac{(3n-1)4^{n}+1}{9}$. 点评:本题考查数列的应用综合题,需要熟练运用数列求和的方法,属于难题.
|
|
http://x.91apu.com//shuxue/gkt/2024/2024tj/2024-08-28/34275.html |