2024年高考数学天津17 |
|
2024-08-28 22:51:22 |
|
(15分)已知四棱锥$ABCD-A_{1}B_{1}C_{1}D_{1}$中,底面$ABCD$为梯形,$AB//CD$,$A_{1}A\bot$平面$ABCD$,$AD\bot AB$,其中$AB=AA_{1}=2$,$AD=DC=1$.$N$是$B_{1}C_{1}$的中点,$M$是$DD_{1}$的中点. (1)求证:$D_{1}N//$平面$CB_{1}M$; (2)求平面$CB_{1}M$与平面$BB_{1}CC_{1}$的夹角余弦值; (3)求点$B$到平面$CB_{1}M$的距离.
答案:(1)证明见解答; (2)$\dfrac{2\sqrt{22}}{11}$; (3)$\dfrac{2\sqrt{11}}{11}$. 分析:(1)取$CB_{1}$中点$E$,连接$NE$,$ME$,易证四边形$D_{1}MEN$是平行四边形,所以$D_{1}N//ME$,由线面平行的判定定理证明即可; (2)以$A$为原点建系,利用向量法分别求出平面$CB_{1}M$与平面$BB_{1}CC_{1}$的法向量,利用向量的夹角公式,求平面$CB_{1}M$与平面$BB_{1}CC_{1}$的夹角的余弦值; (3)由(2)得$\overrightarrow{B{B}_{1}}$及平面$CB_{1}M$的法向量,利用向量法即可求点$B$到平面$CB_{1}M$的距离. (1)证明:取$CB_{1}$中点$E$,连接$NE$,$ME$, 由$N$是$B_{1}C_{1}$的中点,得$NE//CC_{1}$,且$NE=\dfrac{1}{2}CC_{1}$, 由$M$是$DD_{1}$的中点,得$D_1M=\dfrac{1}{2}DD_1=\dfrac{1}{2}CC_1$,且$D_{1}M//CC_{1}$, 则$D_{1}M//NE$,$D_{1}M=NE$, 所以四边形$D_{1}MEN$是平行四边形, 所以$D_{1}N//ME$, 又$ME\subset$平面$CB_{1}M$,$D_{1}N\not\subset$平面$CB_{1}M$, 故$D_{1}N//$平面$CB_{1}M$. (2)解:以$A$为原点建立如图所示空间直角坐标系,
有$A(0,0,0)$,$B(2,0,0)$,$B_{1}(2,0,2)$,$M(0,1,1)$,$C(1,1,0)$,$C_{1}(1,1,2)$, 则$\overrightarrow{C{B}_{1}}=(1$,$-1$,$2)$,$\overrightarrow{CM}=(-1,0,1)$,$\overrightarrow{BB_1}=(0,0,2)$, 设平面$CB_{1}M$的法向量为$\overrightarrow{m}=(x_1,y_1,z_1)$, $\left\{\begin{array}{l}{\overrightarrow{m}\cdot \overrightarrow{C{B}_{1}}={x}_{1}-{y}_{1}+2{z}_{1}=0}\\ {\overrightarrow{m}\cdot \overrightarrow{CM}=-{x}_{1}+{z}_{1}=0}\end{array}\right.$,则$\overrightarrow{m}=(1$,3,$1)$, 设平面$BB_{1}CC_{1}$的法向量为$\overrightarrow{n}=(x_2,y_2,z_2)$, $\left\{\begin{array}{l}{\overrightarrow{n}\cdot \overrightarrow{C{B}_{1}}={x}_{2}-{y}_{2}+2{z}_{2}=0}\\ {\overrightarrow{n}\cdot \overrightarrow{B{B}_{1}}=2{z}_{2}=0}\end{array}\right.$,则$\overrightarrow{n}=(1$,1,$0)$, 所以$\cos < \overrightarrow{m}$,$\overrightarrow{n} > =\dfrac{\overrightarrow{m}\cdot \overrightarrow{n}}{\vert \overrightarrow{m}\vert \cdot \vert \overrightarrow{n}\vert }=\dfrac{1+3}{\sqrt{1+9+1}\times \sqrt{1+1}}=\dfrac{2\sqrt{22}}{11}$, 故平面$CB_{1}M$与平面$BB_{1}CC_{1}$的夹角的余弦值为$\dfrac{2\sqrt{22}}{11}$. (3)解:因为$\overrightarrow{BB_1}=(0,0,2)$,平面$CB_{1}M$的法向量为$\overrightarrow{m}=(1,3,1)$, 所以点$B$到平面$CB_{1}M$的距离为$d=\dfrac{\vert \overrightarrow{BB_1}\cdot \overrightarrow{m}\vert }{\vert \overrightarrow{m}\vert }=\dfrac{2}{\sqrt{1+9+1}}=\dfrac{2\sqrt{11}}{11}$. 点评:本题考查直线与平面平行、点到平面的距离、直线与平面所成的角等基础知识,考查用空间向量解决立体几何问题的方法,属于中档题.
|
|
http://x.91apu.com//shuxue/gkt/2024/2024tj/2024-08-28/34273.html |